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Small-bipolaron formation
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Using the scaling arguments of Emin and Holstein, we examine the formation of small bipolarons
by coupling of electrons to acoustic phonons. We find that for sufficiently small Coulomb interac-
tions, the bipolaron forms at lower electron-phonon coupling constant A than the polaron and is of
lower energy than two polarons when these become stable. For larger Coulomb interactions, there
can be a range of A for which only the polaron is stable, and above that a range for which the bipo-

laron is the lower-energy form.

I. INTRODUCTION

Emin and Holstein' (EH) have introduced an elegantly
simple method of studying polaron formation in the adia-
batic limit. They have examined coupling of the electron,
both to optical and acoustic modes, and have considered
the effect of Coulombic impurity potential. The simplici-
ty of their method derives from the simplicity of the scal-
ing properties of the individual terms in the total energy
of the electron-phonon system. We have extended their
theory to the case of an impurity potential of finite range,
showing that the existence of a characteristic length in the
problem, the range, does not destroy the possibility of the
scaling argument,’ although it makes it more complicated.
We have also found the EH method to provide a very
powerful way to attack successfully, the far more difficult
problem of the influence of the electron-phonon 1nterac-
tion on the mobility edge of a disordered semiconductor.’
In the present note, we apply the EH method to the ques-
tion of the bipolaron. Specifically, we ask whether two
electrons will be bound together into a small bipolaron by
coupling to acoustic phonons at some value of the
electron-phonon coupling constant different, in general,
from that required for small-polaron formation.

II. FORMALISM

The total energy of the two-electron—plus—phonon sys-
tem can be written as

E2=(He1)+Esfd3’1d3’2 | (T, T |2
X[AT)+AMT)]+5K [ dr A%
(1)

where (T}, T,) is the orbital part of the two-particle wave
function and is symmetric with respect to the interchange
TioT;. Hg is the sum of the band energies and the
Coulomb repulsion between the electrons. A(T) is the di-
lation of the lattice at T. The electron-phonon interaction
has been assumed of the deformation-potential type:
H, (T)=E;A(T). K is a proper combination of elastic
constants. Minimizing the total energy with respect to the
dilation A(T), we find that A(T)= —2Ep(T)/K, where

)= [ &%, | 9T, |2 )
Substituting back into Eq. (1), we obtain
EP=(Hy)-44 [ d*rpXD), (3)

where 4 =E?/2K.

We now force the two electrons to be confined within a
domain of linear dimension L. To find the L dependence
of the various terms contributing to E'?, one must first
examine the effects of the electron-electron correlation.
For this purpose we have considered a trial wave function
of the form

Cexp[ —a(ri+r)][1—y exp(—var},)],

where a ~1/L?, C is the normalization factor, and the pa-
rameters y,v characterize the correlation. For each value
of a we have found the values of ¥ and v which minimize
(Hg ). Our main results are the following. (i) The corre-
lation is negligible for small L. (ii) The Coulomb interac-
tion energy behaves as B(L)/L with B(L) a slowly varylng
function of L changing at most by a factor of + as L
changes from zero to infinity; B(L) is about constant for
L <L,, where L,~50. Thus for the purposes of the
present calculation, B can be taken as constant, equal to its
value with no correlations. (iii) The kinetic energy
behaves as a(L)/L? with a(L) remaining about constant
for L <L, and then steadily increasing, finally reaching
(for L= co) a value about 50 times larger than the L =0
(uncorrelated) value. However, at the values of L where
a(L) is appreciably different from the L =0 value the ki-
netic energy is practically negligible relative™ to the
Coulomb repulsion energy. Thus replacing, a(L) by its
uncorrelated value a(0) is a good approximation for the
present purposes In Fig. 1 we plot (Hy” for the actual
values of a(L) and B(L) and for a(0) and S(0)

We have also con31dered alternative ways of confining
the electrons within a region of linear dimension L, e.g.,
by imposing rigid boundary conditions on the surface of a
sphere or of a cube. In all cases we have defined L from
the relation

[ d*rpAL)=L". @
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FIG. 1. Plot of the electronic energy of a correlated (solid
line) and an uncorrelated (dashed line) Gaussian trial function
(see text) vs 1/1, where [ is the dimensionless length given by Eq.
(6).

This definition, which is similar to the way the participa-

tion ratio is defined in disordered systems, is very con-

venient for our purposes in view of Eq. (3). We have

found that the values of «(0) and B(0) depend weakly on

the choice of the particular way the confinement is imple-

mented; the differences were no greater than 30%.
Defining

@_E? €
EH m* ’

€

*
=ZL—”; , (©6)
B

, (7

p=-L_ @)

dg €
we can write the total energy as follows:

(2) __ 1_0 2 * 1
- 12 + l 3 _+_773 '
In the above formulas ap =#*/me%=0.529 A is the Bohr
radius, Ey =e*m /#?~27.2 eV is the Hartree unit of ener-
gy, m* is the ratio of the effective mass to the electronic
mass, € is the dielectric constant, and %’ is a cutoff length
roughly equal to the interatomic distance. In our numeri-
cal calculations we have taken 7’ /az =5. The presence of
7 in the last term of Eq. (9) ensures the obvious physical
requirement that compressing the wave function below the
interatomic distance does not increase further the lattice-
mediated self-interaction, while it still increases the kinet-
ic and Coulomb energies.
In our study of polaron formation in disordered media,
we found it useful to introduce a phonon coupling A de-
fined by the relation

E} _
~2kP

where p is the density of states per unit volume averaged

&)

(10)

A
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over the band. Note that A is very similar to the quantity
denoted by the same symbol in the theory of superconduc-
tivity. The relation between A* and A is

*2
M=t (1)
aBEHﬁ €
In our subsequent calculations we have chosen

apEpp=0.1, the typical value for Si.
The energy of two well-separated electrons interacting
with the lattice is

19 ope

l2 l3+n3 ’ (12)

2eV—

(13)

III. RESULTS AND DISCUSSION

The important parameters in our expressions for €2)(/)
and 2€'Y(]) are the dimensionless ratio m* /e, which deter-
mines the length scale, and the product Am*, which to-
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FIG. 2. Plot of the energy €2 vs length I (dashed line) and en-
ergy 2€'V vs I (solid line) for two characteristic values of the pa-
rameters m* /e and m*A. The units of €* and !/ are given in
Eqgs. (5) and (6), respectively.
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FIG. 3. Plot of the energy €'2}, (dashed line), 2¢'%, (solid line),

and U=€X, —2€l). (solid line) vs Am* for two different values
of m*/e. m* is the ratio of the effective mass to the electronic
mass, and A is the electron-phonon coupling constant.

gether with m* /e determines the relative strength of the

lattice-mediated self- and mutual interactions.
~ In Figs. 2(a) and 2(b) we plot €? and 2¢'" vs I. In Fig.
2(a), corresponding to m*/e=1.4 and Am*=5.75, the
2€'! curve has a minimum at an / about equal to the in-
teratomic distance. The minimum corresponds to an ener-
gy lower than zero (the value at /= ). Thus, two in-
dependent small polarons are formed. On the other hand,
the €?-vs-I curve has a minimum which does not cross
the horizontal axis showing that no bipolaron is formed.
The difference between the two minima can be interpreted
as a renormalized U in the Hubbard sense:
U=e2) —2€) . In the case of Fig. 2(a), U is positive
(repulsive) and about 2 eV (for m* =~1). In Fig. 2(b) we
see that both minima are lower than the energy of the ex-
tended (/= o ) state. However, now the bipolaron is more
stable than the polaron, or, equivalently, U is negative (at-
tractive).

In Fig. 3(b) we plot the bipolaron and polaron minima
as well as their difference U. As Am* increases the
ground state starts from extended (/=o0), and then
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FIG. 4. Phase diagram in the plane m* /e,Am* indicating the
regions of extended eigenstates (/= « ), small polarons (positive
U), and small bipolarons (negative U). m* is the ratio of the ef-
fective mass to the electronic mass, € is the dielectric constant,
and A is the electron-phonon coupling constant.

switches to small polarons with a positive (repulsive) U.
Finally, at a still higher value of Am*, U becomes negative
(attractive) and, consequently, the ground state is a small
bipolaron. This sequence of events is expected on physical
grounds, since increasing Am* implies an increasing self-
attraction which first overcomes the kinetic energy [when
m* is large (i.e., small kinetic energy) and € is small (i.e.,
large Coulomb repulsion)] to form polarons, and then the
Coulomb  repulsion as well, to form bipo-
larons. On the other hand, for small values of m* /¢, i.e.,
large kinetic energy and/or small Coulomb repulsion, the
increasing self-attraction is expected to first overcome the
Coulomb repulsion and then the kinetic energy; this is'
what happens [see Fig. 3(a)]. The ground state switches
directly from extended states to small bipolarons. U is
negative for all values of Am*.

In Fig. 4 we summarize our findings in a phase dia-
gram. For small A and/or small m* (i.e., wide-band ma-
terials), no polarons or bipolarons are formed. For
narrow-band materials (large m*) with small €, polaron
formation is favored with U being repulsive. On the other
hand, for large € and/or large A, U becomes negative (at-
tractive), and the ground state switches to bipolaron.
Within the framework of our approach the transition
from extended to polarons or bipolarons is first order,
while the transition from polaron to bipolaron is second
order. Some of the these findings were already known.’
However, it is worth pointing out how effortlessly they
can be obtained by the scaling procedure.

Finally, we mention that the critical value of A for
small-polaron or -bipolaron formation is about 5 for
m*=1. This estimate is no more accurate than a factor
of 2. Because A is almost identical to the A entering the
theory of superconductivity, it follows that materials of
potentially high T, (A > 3) are unstable towards bipolaron
formation, thus becoming insulators instead of high-T,
superconductors. The best-known example where this in-
stability actually occurs is the case of solid hydrogen,
where the metallic phase transforms to the ultimate bipo-
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laron: two electrons pulling together two hydrogen nuclei
to form what is more commonly described as molecular
hydrogen. However, there may be an intermediate regime

in which bipolarons form but are not localized so that bi-
polaronic superconductivity occurs, as proposed by Alex-
androv and Ranninger.’
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