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We examine the formation of small bipolarons in disordered systems by combining the scaling ar-
guments of Emin and Holstein for polarons with the scaling theory of localization. For extended
states away from the mobility edge, we find that for a sufficiently small Coulomb interaction the bi-
polaron forms at a lower electron-phonon coupling constant A than the polaron and is of lower ener-
gy than two polarons when these become stable. For larger Coulomb interactions, there can be a
range of A for which only the polaron is stable and above that a range for which the bipolaron is the
lower-energy form. As we approach the mobility edge, the exteuded states tend to collapse into lo-’
calized polarons or bipolarons, and the region of the stability diagram corresponding to extended
states shrinks and eventually disappears as the mobility edge is reached.

I. INTRODUCTION

Emin and Holstein! (EH) have introduced an elegantly
simple method of studying polaron formation in the adia-
batic limit. They have examined the coupling of the elec-
tron both to optical and acoustic modes and have consid-
ered the effect of a Coulombic impurity potential. The
simplicity of their method derives from the simplicity of
the scaling properties of the individual terms in the total
energy of the electron-phonon system. We have extended
their theory to the case of an impurity potential of finite
range, showing that the existence of a characteristic length
in the problem, the range, does not destroy the possibility
of the scaling argument,2 although it makes it more com-
plicated. We have also found the EH method to provide a
very powerful way of attacking successfully the far more
difficult problem of the influence of the electron-phonon
interaction on electron states near the mobility edge in
disordered systems.” We have also applied the EH
method to the question of the bipolaron in a periodic sys-
tem.* Specifically, we have studied whether two electrons
will be bound together into a small bipolaron by coupling
to acoustic phonons at some value of the electron-phonon
coupling constant different in general from that required
for small-polaron formation. In this paper we attack the
problem of the bipolaron in a disordered system by com-
bining the EH method with the scaling theory of localiza-
tion.

II. FORMALISM

The formalism follows closely that of our previous
work on the question of the bipolaron in a periodic sys-
tem,* but for completeness and clarity we repeat it here, in
part. The total energy of the two-electron-plus-phonon
system can be written as

E(2)=<Hel>+E.\' fd3r1d3r2|¢(Fla?2)|2
X [A(T)+A(r;)]
+1K [ d¥raln), .o

where (T, T,) is the orbital part of the two-particle wave
function and is symmetric with respect to the interchange
T, H, is the sum of the one-electron energies and
the Coulomb repulsion between the electrons. A(T) is the
dilation of the lattice at ¥. The electron-phonon interac-
tion has been assumed to be of the deformation-potential
type: H,.w(T)=E;A(T). K is a proper combination of
elastic constants. Minimizing the total energy with
respect to the dilation A(Y), we find that A(T)
= —2E, p(T) /K, where

p(D= [ & [T, T2, 2)
Substituting back into Eq. (1) we obtain
EP=(Hy)—a4 [ d*rpXD), (3)

where A =E?/2K.

We now force the two electrons to stay within a domain
of linear dimension L. For a disordered system, we have
the following L dependence of the various terms contri-
buting to E®, The band energy term, which was exam-
ined in detail in Ref. 3, behaves as

Eb=_£—zz gl | @

where B is a constant of the order of 100, p is the density
of states (DOS) per unit volume, and g(L), the dimension-
less conductance,’ is given by’

1 7 L
T+7/L T2 &

The length £ characterizes the largest extent of the ampli-
tude fluctuation of the eigenfunction in a disordered sys-

1
L)=—
P4 >

. : (5)

~ tem; beyond £ the eigenfunction looks uniform. The inner

length 7’ is of interatomic size, and it has been introduced
in order to make the formula for E, proportional to 1/L>
when L is equal or less to interatomic distances; in
what follows we have chosen 7'=5ap=~=2.65 A (ap
=#2/me?=0.529 A is the Bohr radius).

The lattice-mediated interaction [second term in Eq.
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FIG. 1. Phase diagram in the plane m* /e,Am* indicating the
regions of extended eigenstates (/= 0 ), small polarons (positive
U7), and small bipolarons (negative U) for different values of £.
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(3)] is proportional to
L
fo pHrYamridr .

If the two electrons are uncorrelated, i.e,
P(T,T,)=¢(T)d(T,), we have immediately that
pXAT)=|#(T)|* In Ref. 3 we have developed some argu-
ments based on the assumed fractal character of the eigen-
function ¢ and on numerical data for the participation ra-
tio to estimate the integral of |¢|*. A more direct and
physically transparent alternative way of obtaining the in-
tegral of |4 |* is based upon the assumption® that the
strongly fluctuating eigenfunctions above the mobility
edge are the analogs of resonance states’ in potential wells.
This analogy (which works well for localized states®) al-
lows one to prove® that

L
fo | ¢ | *4mrdr ~E/qL>

when L >>£ and ~1/9L? when L <<£. We have interpo-
lated between these forms and we have fixed the overall
proportionality constant from the requirement that the
present results must reduce to those of the periodic case
when the disorder disappears, i.e., when §=£&,, where &, is
of interatomic size. In our explicit results below we have
chosen £,=7'/2. Therefore, the sum of the electron-
phonon interaction and the polarization energy of the
phonon is given by
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FIG. 2. Plot of

€2 (BP solid line), 2€.t., (P solid line), and U=eZ,—2¢}, (dashed line) vs Am* for (a) E=&,, (b) £=2&, (©

()
-01}
0.2
-02} 0.1
£
F 00 U
—03} -0.1 t
-02
~0.4 -03
0
0 T T T T
-02} —j0.4
- —o2
—oab U oo}
S T
~g -0z
. —08[ d-04
E £=20§,
w .
—o8l m*_
08— T =14 g\ G
~1.0|-
@
-2 i | ]
] 2 4 6 8 10
m*

£=10&,, and (d) £=20&, for m* /e=1.4. &=n'/2 and v’ =5a5. The ground-state energy is denoted by a heavy solid line.
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We have introduced (1) in the denominator as a cutoff
at atomic sizes. The presence of 7’ satisfies the obvious
physical requirement that compressing the wave function
below the interatomic distance does not increase further
the lattice-mediated self-interaction, while it still increases
the kinetic and Coulomb energies. The form of the
lattice-mediated interaction in Eq. (6) for L >>§ is essen-
tially identical to that used in Ref. 3. However, for
7' <<L << the two forms are different. This difference
is of no qualitative consequence since both forms produce
the same enhancement, £/7', for large values of L. This
enhancement combined with the reduction of the band en-
ergy by a factor of 7' /£ [see Eqs. (4) and (5)] is the mech-
anism by which the eigenstates with fluctuating amplitude
tend to collapse to polarons or bipolarons even for weak
electron-phonon coupling.

For the Coulomb interaction, we have used the expres-
sion y(L)/L valid for L >>£ where no correlation is
present. We have already shown* that the correlation
(which appears for large L) does not change y by a factor
of more than 2. For & < L the single potential-well analo-
gy® produces an expression of the form yIn(L/%')/L.
We have interpolated between these limits as follows:

(6)

1 (/LY . L+7
E Covtomb = 1 - (7
Coulom®™ 7 1 14(£/L)* * 14(E/LY " )
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(BP solid line), 2€l), (P solid line), and
£=10&, and (d) £=20&, for m* /€=0.4. §o="7'/2 and 7’ =5ap.

p——_

U=¢€2), —2€\0) (dashed line) vs Am* for (a) £=E, (b) £=2&, (c)
The ground-state energy is denoted by a heavy solid line.

We have found that Eq. (7) for the Coulomb interaction
produces essentially the same results as the simple term
1/L. Therefore, we adopt the y/L on the Coulomb-
interaction term, with y fixed so that for £=§, we obtain
the same results as in the periodic case.

Defining

6(2)=E_(3 e
EH m* ’
_Lm
Tap €
E} %

"~ 2KEgaj €

n_zz;m‘
ap € ’

(8)

» 9)

(10)

(11)

we can write the total energy for a disordered system as
follows:

7.051*

2 _ all)
2 gl 1+1/6)+m°

2.2
="+

(12)

In the above formulas, Ey =e*m /#%2~27.2 eV is the Har-
tree unit of energy, m* is the ratio of the effective mass to
the electronic mass, and € is the dielectric constant. The
quantity a(/} is given by
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FIG. 4. Projection of the three-dimensional phase diagram on 005 _11.5 _1|_° _‘I,__,, ol.o 0!5

the m*/e,Am* plane. The lines of projection are plotted as
dashed lines. OA is the locus of triple points and OB is the limit
of the line separating the P and BP regions as £— « (see Fig. 1).

*
2Bm 01? ng(l) (13)
pEnaz n' 1

Substituting for m* and p tg'pical values corresponding to
Si we find that m*/pEgag~3. Since both p, the DOS
per volume averaged over the band, and m* are inversely
proportional to the bandwndth we expect that the approx-
imate equality m*/ pEHaB~3 to be valid for most ma-
terials. In our explicit calculations we have chosen
2Bm*ag /pEHaBn =7 (corresponding to a value of
B=57.6) again by the criterion that our results coincide
with those of the periodic case when £=§; It is
worthwhile to point out that the above choices do not pro-
duce exactly the periodic expression for €'?’ for all I. For
example, for £€=§; and I >>§;, Eqs. (12) and (13) yield
eP=(7/1*)+(2.2/1)—(3.53A* /1) as opposed to
=(10/1%)+(2/1)—(4A*/13) for the periodic case.
Given the uncertainties in the various parameters and the
generic nature of our calculations, we consider those
differences as unimportant for our purposes.

In our study of polaron formation in disordered media®
as well as in the study of the bipolaron in periodic sys-
tems,* we found it useful to introduce a phonon coupling
A defined by the relation

E2
kP

similar to the quantity denoted by the same symbol in the
theory of superconductivity. The relation between A* and
Ais

all)=

A= (14)

*2

M=t am (15)
aBEHﬁ €

In our subsequent calculations we have chosen

asEyp p=0.1, the value appropriate to Si, so that

A*= 10)»m‘2/e
The energy of two well-separated electrons interacting
with the lattice is

a(l)
7

1
pWH1+1/E)+7°

7.05A*
2

(16)

2eM =

log (\m*)
FIG. 5. Critical value £F below which no polaron is formed as
a function of Am*. The initial value of the polaron size L§ is
also plotted vs log(Am*). m*/e=1.0. Here £ and L are in
units of £,=7'/2 and 5 -SaB

III. RESULTS AND DISCUSSION

The important parameters in our expressions for €

and 2¢'! are the dimensionless ratio m* /e, which deter-
mines the length scale, and the product Am*, which to-
gether with m* /e determine the relative strength of the
lattice-mediated self- and mutuval interaction and the
correlation length £ which is a measure of disorder above
the mobility edge.

By minimizing the total energies €? and 2€'" with
respect to I, we can find for a given set of parameters
(m*/e,Am* E) which configuration (two polarons, bipola-
ron, or two electrons in extended states) has the lowest en-
ergy. In Fig. 1 the m*/e,Am* phase diagram is shown
for different values of £. For £=§,, we reproduce by con-
struction the phase diagram for the periodic case.* The
main characteristic of this phase diagram is that for small
A and/or small m* (i.e., wide band materials) no polarons
or bipolarons are formed. For narrow band materials
(large m*) with small € polaron formation is favored. On
the other hand, for large € and/or large A, the ground
state switches to bipolaron. As we approach the mobility
edge and £ increases the extended states are progressively
occupying less and less space in the stability diagrams.
Also, the tricritical point approaches the origin in the
m*/e,Am* phase diagram. For disordered semiconduct-
ors m* does not have a clear meaning, but its most likely
value would be of the order of 1. € is of the order of 10,
and A is of the order of 0.1 to 1. Therefore, we are near
the Am* axis since m* /e is less than 0.1. Our work sug-
gests that there is only a very small region in which the
polaron is stabler than the bipolaron.

In Figs. 2(a)—2(d) we plot the bipolaron and polaron
minima as well as their difference U for m* /e=1.4 and
different £. The difference between the two minima can
be mterPreted as a renormalized U in the Hubbard sense:
U=E% —2E). U is positive (repulsive) when bipola-
rons are stabler and U is negative (attractive) when bipola-
rons are stabler. From Fig. 2(a) we see that as Am* in-
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creases the ground state starts from extended states
(I=w0) and then switches to polarons with a positive
(repulsive) U. Finally, at a still higher value of Am*, U
becomes negative (attractive) and, consequently, the
ground state is a small bipolaron. This sequence of events
is expected on physxcal grounds, since increasing Am* im-

plies an increasing self-attraction which first overcomes
the kinetic energy [when m* is large (i.e., small kinetic en-
ergy) and € small (i.e., large Coulomb repulsion)] to form
polarons and then the Coulomb repulsion as well to form
bipolarons. As we increase § [Figs. 2(b)—2(d)], there is no
qualitative difference except that the value of Am* at
which extended states switch to polarons gets smaller and
smaller. At the same time for a given value of Am*, | U |

increases as £ increases. On the other hand, for small
values of m* /e, i.e., large kinetic energy and/or small
Coulomb repulsion, as is seen in Fig. 3(a) for m*/e=0.4
and £=§£, The ground state switches directly from ex-
tended states to small bipolarons. U is negative for all
values of Am*. As we approach the mobility edge and £
increases, as can be seen from Fig. 1 and Figs. 3(b)—3(d)
the extended states for the small Am* values transform to
polarons and the tricritical point moves towards the origin
in the m* /e,Am* phase diagram.

In Fig. 1 we have summarized our findings in a phase
diagram of m* /e vs Am* for different values of £. Actu-
ally it would be better if we could draw a three-
dimensional phase diagram in the space m* /€,Am* and &.
A projection of this three-dimensional phase diagram on
the m*/e,Am* plane is shown in Fig. 4. To avoid con-
fusion the lines which are projections are plotted as
dashed lines. The line OA is the projection of the lines of
the triple points. The line OB is the limit of the line
separating the polaron region from the bipolaron region as
&— oo (see Fig. 1). The symbols in each region must be
interpreted as follows:
means that the states at any point in this region are ex-

e.g., the EXT + P + BP region -
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tended for £=£, (periodic system). As disorder increases,
i.e., as £ increases a critical value §c is passed beyond
which polarons are the lowest-energy states As £ is in-
creased further a second critical value £ is reached
beyond which the ground state is blpolaron

In Fig. 5 we plot the critical value £P vs log(Am*) for

m*/e=1. In the same figure the size of the just-formed
polaron L§ (corresponding to m* /e=1,E=E;) is plotted
against log(km ). These results are qualitatively similar
to our previous results shown in Fig. 2 of Ref 3. For ex-
ample, in the present case, as in Ref. 3, both £F and L ex-
hibit a power-law dependence on A. However, in the
present case both exponents are very close to —1:

£ =3.57'(Am*)"!, (17
L{=7n"(Am*)"! (18)

while in the previous case the exponents for £ and L§
were found to be equal to —3 and —, respectively.
Furthermore, in the present case the rather precipitous
drop of §c and L exhibited before is absent. As a matter
of fact, L} shows a tendency to saturate for large values
of Am*. These minor quantitative differences are due to
the different form of the e-ph and phonon term used in
the present work [compare Eq. (6) vs Egs. (3)—(5) of Ref.
3], and we think that Eq. (6) for E;, is a better choice
than that of Ref. 3. The dlfferences especially for large
Am?* are insignificant, since both expressxons give Lo of
the order of interatomic distance for )»m > 1 as expected.
The saturation feature exhibited by L§ in F1g 5 at large
values of Am* is a desirable one. However, one must not
expect from the present theory to describe in detail accu-
rately what is happening as the polaron or bipolaron
reaches atomic sizes, since such a description requires de-
tailed input regarding the atomic structure of each materi-
al. In conclusion, we would like to point out that the
main results of this work are summarized in Fig. 1.
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