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By combining numerical results on wires of finite cross section with the coherent-potential ap-
proximation and the potential-well analogy, a formula for the conductivity of a three-dimensional
disordered system is obtained which interpolates between the weak-scattering limit and the mobility

edge.

I. INTRODUCTION

Despite the extensive attention that disordered systems
have received in the last fifteen years, our ability to obtain
explicit quantitative results is still limited. Recently an
analogy of the localization problem with that of a bound
state in a potential well was developed! on the basis of
progress in the conductivity calculation.? The analogy
with the potential well permits explicit calculations of the
localization lengths, mobility edges,’ etc. from quantities
that can be obtained from mean-field theories such as the
coherent-potential approximation (CPA). However, in or-
der to check the results of the approximate scheme out-
lined above [based on the CPA and the potential-weil
analogy (PWA)] we need independent methods of obtain-

ing the same quantities. Probably the most reliable such

method is the strip or wire method. In this method one _ ) )
. Where f(x) is a universal function of its argument, £ is a

considers coupled one-dimensional (1D) systems. Each
1D system is described by a tight-binding Hamiltonian of
the form

H=2|n)e,,(n|+V2n’m|n)(m| , (1.1)
" ,

where ¢, are independent random variables with a com-

mon probability distribution. In our explicit results we

assume this probability distribution to be a rectangular of

total width W. The corresponding sites of the nearest-

neighbor 1D system are coupled together by an interchain

matrix element ¥’ which we take equal to V. As the .

number of coupled chains approaches infinity, we recover
a two-dimensional (2D) or three-dimensional (3D) disor-
dered system depending on whether the chains have been
placed on a plane with two nearest neighbors each or
whether they have been placed as to form a cylinder of
square cross section. In the present work we concentrate
on the 3D case so that our system consists of M? regulai-
ly placed chains, each one having four nearest neighbors.
Then one determines through a rather sophisticated nu-
merical technique®~> the largest localization length A,/ in

i

this system of M? coupled chains. The largest M for

- which reliable numerical determination®* of A, has been

carried out is M =8. One finds two distinct behaviors of

_ the function Ay, versus M. In the first case, correspond-

ing to localized states the second derivative d?A, /dM? is
negative and Ay, seems to approach a finite limit A as
M — o; obviously A is the localization length of the re-
sulting - 3D disordered system. In the second case,
d*\yr/dM? is positive and Ay —> 0 as M — o, implying
that the states in the resulting 3D systems are extended.
Here we consider this second case.

It was found numerically that the function A, versus
M cobeys a simple scaling relation of the form
A
. [A’f_ . L1
M 3

quantity which depends on the properties of the system
(but it is independent of M as long as M >4, and
M > 4] /a), where a is the spacing between the chains and
[ is the mean free path in the resulting 3D system (as
M —s o). Hereafter all lengths will be given in units of a.
Thus a single quantity £ determines the localization -
length Ay, of the system. This result is consistent with
the scaling theory of localization® which is based upon the
assumption of a single scaling quantity.

Let us consider now our system with M? coupled
chains, each one having a finite length L. It is obvious
that for L >>A,, the transport properties of our system
are determined by the ratio L /A,;;. However, in view of
the one-parameter structure of our results, it follows that
the quantity L /A, uniquely determines the transport
properties of our system at all length scales L. In the spe-
cial case M =1 (truly one-dimensional system) it is well
known’ that the resistance R, is given by

R1=—:—?(e2LMI—1), M=1. (1.3)
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MacKinnon and Kramer* have implicitly assumed that
Eq. (1.3) is valid for all M by replacing R{—R,, and
A1—Ay. We show here that although this is not true, one
can still write a relationship between Ry, and L /A, simi-
lar to Eq. (1.3). This is very significant because it allows
an explicit numerical determination of the conductivity,
which, when combined with the potential-well analogy,
provides a simple interpolation formula for the conduc-
tivity between the weak-scattering limit and the mobility
edge.

II. RESULTS OF THE WIRE METHOD

MacKinnon and Kramer* (MK) have studied numeri-
cally the localization length at the center of the band:
E =0. They have numerically determined the form of the
function f and the dependence of & on the disorder W.
They found that f(x) is an increasing function of x with

flx)—ex asx— oo, 2.1
and
f(x)—>0.6 as x—0. 2.2)

Note that the scaling requirement determines £ up to mul-
tiplicative constant. To uniquely determine &, one needs
an additional condition. One such condition is to demand
that ¢ in Eq. (2.1) equals one. The corresponding parame-
_ ter will be denoted by £, i.e., § is an appropriate scaling
variable such that

KM—>M2/§ asM—o . 7 (2.3)

In other words, 1/£ is the slope of the straight line A, /M
versus M for sufficiently large M. As can be seen from
Fig. 1, the linear relation between Ay /M and M is reason-
ably well obeyed down to M =3, giving £=4.92 as op-
posed to &y =1.143 obtained in Ref. 4 for the same dis-
order W =10. Thus, we conclude that

E=4.30EuK - (2.4)

To further check the accuracy of the proportionality
constant, in Eq. (2.4) we examined the case W =12 and
we found £~(11%1) as opposed to Eyx=2.53 yielding a
" ratio of 4.35+0.4 in reasonable agreement with Eq. (2.4).

Another quite common way to determine the multipli~
cative uncertainty of the length £ is by demanding that §
blows up in exactly the same way as the localization
length at the mobility edge, i.e., if A—b/(E,—E)¥
E—E_, then £ is determined by the requirement that

E—~b/(E—E,) as EE} . (2.5)

By examining the data of MacKinnon and Kramer we
find that &g is about 20% larger than their localization
length on the other side of the critical point. However,
the localization length of MacKinnon and Kramer seems
to be about 10% less than the actual localization which
for W =30 we found to be A=2.05 (see Fig. 2) as opposed
to A=1.867 found in Ref. 4. The localization length, A, is
the inverse of the slope of the straight line M /A, versus
M. Thus, we conclude that

§=0.98ux - (2.6)
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FIG. 1. Graphical determination of € as the inverse slope of
the curve Ay /M vs M, where Ay is the localization length of a
rod of width M for disorder W =10 for a simple-cubic lattice at
the center of the band.

M/Ay

FIG. 2. Graphical determination of A as the inverse slope of
the curve M /A) vs M, where Ay, is the localization length of a
rod of width M for disorder W =30 for a simple-cubic lattice at
the center of the band.
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TABLE 1. Fluctuation lengths £ and £, CPA mean free path , and Born’s approximation mean free
path Iy (lp=35.92/W?) (in units of lattice spacing} versus disorder W (in units of the transfer integral
V) for the center of the band of a simple cubic lattice. The values of £ and £ for W > 10 were deduced

from Ref. 4 (see text).

£ G

w (numerical) (numerical) I Iy [Eq. §(4.3)]
3 +0.3420.1 0.07£0.02 4.09 3.99 0.057
4 0.55+0.05 0.1142:0.01 2.40 2.245 0.11
6 1.10£0.1 0.228+0.02. 1.188 0.998 0.23
8 2.040.15 0.41+0.03 0.76 0.561 0.42
10 4.92+0.1 1.02+0.05 0.557 0.359 0.88
11 6.95 1.44 0.493 0.297 1.39
12 11+0.1 2.28+0.1 0.443 0.249 2.33
13 18.7 3.88 0.403 0.213 4.15
14 39.6 8.22 0.370 0.183 8.01
15 95 19.7 0.343 0.160 18.2
16 © 456 94.6 0.321 0.140 75.3
16.45 0 o _ 0.311 0.134 0
Comparing Eqgs. (2.4) and (2.6), we find that However, we have already argued that L /A, is a well-
E=4.82¢ 2.7) behaved quantity which can serve as the single parameter
= : - of the system and which is obviously additive in L. It fol-

In Table I we present results for £ (or &) versus disorder

W for E=0. For W > 10 the results were deduced from

Ref. 4 by using Egs. (2.4) and (2.6). For W<12 we
present our own results. We found it necessary to deter-
mine £ for low disorder in order to check the correctness

of the relation between the & or £ and the conductivity o

to be presented in the next section. In the same table we
include the values of the mean free path / as calculated by
the CPA and the values of the mean free path [y as ob-
tained from Born’s approximation, which for the center of
the band of a simple-cubic system takes the form
N 2 :
zo=35.919% : @8
III. CONNECTION
BETWEEN £ AND THE CONDUCTIVITY

Anderson® has examined the problem of the resistance
in a multichain system such as ours in the quasi-one-
dimensional limit where A >>M >>1I, 1. In this case he
found that a well-behaved quantity which can serve as the
single parameter characterizing the system and which is
also additive with respect to the length is the following:

142
Ps

(3.1)

A=p;ln

?

where R is the dimensionless resistance

2
R= Eﬁ—R =R /4108 Q , (3.2)

and p; is a slowly varying function of the resistance with
the following limits:

ps—3 as R—0, (3.3a)

as R—» oo . (33“2))

.
P 1764

" lows then that 4 must be proportional to L /Ay,

L

A=y,
Y Tons (3.4)
which in terms of R becomes
= L
R=mp, |exp | L= |—1]. 3.5
Ps Ps A'M ] )

This is the relationship which replaces Eg. (1.3) for the
present multichain system. Now in the limit of L >>2A,,,
R ~exp(2L /A,) from which it follows that

(3.6)

In the semiclassical regime L <<y, Eq. (3.5) becomes

y=2ps(c0)=1.13 .

= L

R=yr— |1+ ps(e) L
Am

(3.7)

The conductivity o is defined in terms of R by the rela-
tionship '

1
R=— .
vl (3.82)
or
= e? L
P (3.8b)
On the other hand, we can always write that
AM=M2/E,y, , (3.9
where &,, approaches its limiting value Z as follows:
11,11 |
§M_)‘§+cM asM—w. (3.10)

For a thin wire (L‘ >>'1W), Eq. (3.7) can be written as
follows:
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S8R 1 = R '

R 2up,(0) R= a’ B.11)
where on the right-hand side of Eq. (3.11) R can be writ-
ten as (e2/#)L /oM?). In real materials the role of L is
played by the inelastic diffusion length A=(D7)? or
the diffusion length L,=(D/w)!/?, where D is the dif-
fusion coefficient, 7, is the inelastic collision time, and o
is the frequency of an external electric field, if any. The
exact relationship between L and A or L, is not known.
Here we assume, as Giordanno did,’ that

L—-Vv72L, (3.12a)
—V2A, (3.12b)
in which case (3.11) takes the form
SR R’
R 9126 °’ (3.13)

where R'=A/oM%a® expressed in Q. Giordanno® used
25813 in the denominator and White et al.'® 16433, in-
stead of the present result of 9126. Note that the absence
of the factor \/5. in (3.12) would increase 9126 to 12 906.

In the case of a true 3D system where M =L — w0, Egs.
(3.7), (3.8b), (3.9) and (3.10) yield

(3.14)

Equation (3.14) is very important because it allows the
determination of the conductivity from £ (or £) which can
be determined reliably numerically. Equation (3.14) per-
mits us to check the correctness of Anderson’s expression
(3.1) on which (3.14) is based by going to the weak disor-
der limit (small W) where the conductivity can be ob-
tained from the CPA and £ can be obtained numerically.
There is a lower limit for the disorder at which we can
calculate numerically £ imposed by the restriction [ <<M
and M =8 (due to numerical limitations). We have
chosen W =4V for our test for which we found that
Ocpa=0.5746, [ =2.4 and £=0.55 from which it follows
that y=0.99+0.1 in good agreement with the value
¥=1.13 predicted on the basis of Anderson’s analysis.
Given the numerical uncertainties, hereafter we simplify
the situation and we consider p; to be a constant equal to
< thus y will be taken as

y=1 (3.15)
and the basic equation (3.14) will become
2 2 ‘
e 11 e°0.066
== - : 16
o= R (3.16)
Combining Eqgs. (3.7), (3.9}, and (3.10) with

pslo0)=ps(0)=" for the truly 3D case of M =L >>§, we
obtain

e? |1
"_Trﬁ[g“L c L

1—c 1

, L>§& (3.17)

which is the same dependence as predicted by other ap-
proaches.? Unfortunately the numerical results are too
scattered to allow an independent determination of the
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constant c, i.e., of the coefficient of the 1/L contribution
in contrast to the coefficient of 1/ which we just deter-
mined with an estimated accuracy of about 10%. If we
take the results of weak scattering!! and make the
correspondence (3.12a), we find that (1—e¢)/c=1/27 so
that Eq. {3.17) can be written as

o’ | 0:066  0.051
A £ L

It is interesting to find the conductivity close to the mo-
bility edge where L <<£. Equation (3.5) permits us to ex-
amine this limit. However, as was pointed out before, the
derivation of Eq. (3.1) [on which Eq. (3.5) is based] as-
sumes that Ay >>Mo&«<M=L. Thus, it is doubtful
whether one can use Eq. (3.5) to examine the critical re-
gion L << £&. Nevertheless, if we just proceed, we find (us-
ing the MK result of Ay /M =0.6 for M <<£) that the
critical resistance is

, L>E. (3.18)

R,=42.46 or R,=174436 Q , (3.19a)
or that the critical conductance is
2
Gc=0.02365ﬁ— ) (3.19b)

or that the conductivity in the critical region (L << &} is

5 22 00236
A L

Comparing Eq. (3.20) with Eq. (3.18), we can conclude (as
Vollhardt and Wolfle? did) that the conductivity for a 3D
system has the form

0.066 b

4 L

for all ranges of disorder, starting with weak disorder all
the way to the mobility edge. The coefficient of £ is accu-
rate to about 10%, while the coefficient b is more uncer-
tain and seems to vary from b =0.05 for weak disorder to
about half this value at the critical point. It is possible to
extend Eq. (3.21) into the region of localized states, but
there are greater uncertainties there about which physical
quantity will play the role of L. A better understanding
of the role of the electron-phonon interaction is required
before one can attempt to obtain a reliable general formu-
la for the conductivity in the localized regime.

Equation (3.14) allows us to define the energy E,
beyond which the conductivity is adequately described by
the CPA result oy Since for weak disorder
&~1"'~ W20 while for strong disorder £— oo, there is
always an intermediate point where /=£. We choose this
point as a definition of the onset of the reduction of o due
to fluctuations in amplitude (of course this reduction is a
continuous process and the above definition is only for
orientation purposes).

, L <<&. (3.20)

o2
o=—

% (3.21)

IV. A FORMULA FOR THE CONDUCTIVITY

By employing the potential-well analogy,”!> we have
shown! that the localization length A can be expressed as a
product of the mean-free-path times a function of SI2,
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where S is the surface of constant energy for the disor-
dered system! and [ is the mean free path. Because as we
approach the critical point both £ and A have the same
form (apart from a sign difference), it follows from Ref. 1
that

£E—2.72] 4.1)

6
as ¢—1,
¢_ ¢
_ where ¢=S12/(SI?), and the critical value of SI?, (Sl 2,
was found to be 8.96 before.”!* CPAis very reliable! in
calculating the quantity SI” as our comparison with nu-
merical work has shown us. In the limit of weak disorder,
on the other hand, £ can be easily obtained in terms of the
CPA conductivity, i.e.,

§—> 2;'14 as Slz—-> 0 . 4.2)

We have used the numerical results of Table I to find a
simple interpolation function between these two limits.
We found that the following function provides a reason-
able fit as can be seen in Table I and Fig. 3:

£=2.721 |~ (4.3}

6
¢ ¢2 o—
Further justification for this formula will be presented
elsewhere.’? Combining Eq. (4.3) with Eq. (3.21), we ob-
tain a general formula for the conductivity which covers
the entire range of extended states up to the critical point
for localization.

In Table II and in Fig. 4 we compare our results for the
conductivity: og is the result of the Born approximatiori,
where ogo=(e2/127°#)SI with I given by the Born ap-
proximation [Eq. (2.8)]. In the present case where
S =92.648a ~2, we obtain for og

ot 8046
O Za (W2

oy is the CPA result which is given as follows:

(4.41-5
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FIG. 3. Correlation length £ (in units of lattice spacing) vs
disorder W /V for a simple-cubic lattice at the center of the
band. Dots are points determined numerically and the solid line
is according to Eq. (4.3).

2
_1—;T7f dE’So(E—zl—E')UO

=3

(E' 2+E%)2

where 2 is the CPA self-energy, £=2,+iZ;, S is the
periodic constant-energy surface in k space and v is the

X(E —3,—E") , @y

TABLE II. Conduétiwty (in units of 10~%e*/#a) versus disorder; oy is the Born approximation re-
sults, o, is the CPA results, and the last two columns are the results for o based on Eq (3.16) with ei-

ther Eq. (4.3) or the numerical determmatlon of &

o o
[Egs. (3.16) (numerical)
w/Vv T a9 and (4.3)] [Eq. (3.16)]
3 9940 10046~ 10040 10180
4 : 5591 5746 5730 5743
6 2485 2678 2671 2894
8 - 1398 1592 1577 1591
10 895 1067 752 645
11 739 899 477 457
12 621 768 284 291
13 529 665 159 169
14 - 456 530 82.6 80
15 398 511 36.3 334
16 349 454 8.8 6.94
16.45 432 0 0

302.5

ol
i



6488
WO T T 1T T T T T T T T T T 173
1000 |- _
—-F .-
- S
- e ¥
£ u i
2
g
< 100 —
10 = —E
1 a.i B I S N S T B N N |
0 45 6 7 8 910 11 12 13 14 15 16 17

w/v

FIG. 4. Conductivity (in units of 10~%e2/#a, where a is the
lattice spacing) vs disorder for the center of the band of a
simple-cubic lattice; o is the Born-approximation results, oy is
the CPA results; the solid line is based on Egs. (3.16) and (4.3)
and the dots are based on (3.16) and the numerical determina-
tion of £.

periodic velocity averaged over all states of constant ener-
gy. Note that ooy and oq are surprisingly close together
even for large disorders. The reason is an accidental al-
most cancellation of two effects: To obtain oy from og
one makes two distinct approximations. (i) Sy and v, are
considered energy independent and are pulled out of the
integral; for the center of the band this approximation
enhances the value of ¢, (ii) [ is replaced by [/, as given
by Eq. (2.8); this approximation reduces the value of [ (see
Table I) and hence, partially cancels the errors of the first
approximation.

In Fig. 4 we plot ogy, 09, and o as obtained from Egs.
(3.16) and (4.3); the dots represent ¢ as obtained from Eq.
(3.16) and the numerical determination of £ as given in
Table II. We also denote by arrows the value that Mott’s
formula would predict for minimum metallic conductivi-
ty. Indeed, Mott writes

Pe
Po

2
1e
3

— 4.6
7’ 4.6)

O min
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where p, is the density of states at the critical disorder (in
the present case 0.112/2¥) and p, is the corresponding
density of states for zero disorder (in the present case
0.285/2¥). Thus, the result is
o2

Tnin=0.0516 7. 4.7)
Note that the unit of conductivity in both Table II and
Fig. 4 has been taken as 10~ *?2/#a which for a =2.434 A
equals 1 cm~'Q~!, Figure 4 gives for the first time (to
the best of our knowledge) a quantitate, reliable (estimated
error of about 10%) result for the behavior of the conduc-
tivity versus disorder for the center of the band.

V. SUMMARY

There are two main results for the present work. First,
Eq. (3.21) or (3.16), which connects a quantity of great
physical importance, namely the conductivity o, with &,
which can be obtained from reliable numerical work.
This connection allowed us to obtain a more accurate esti-
mate of the correction to the conductivity of very thin
wires, as well as a real check of Anderson’s analysis® of
the multichannel system. The second important result,
Eq. (4.3) obtained through a combination of the numerical
work on wires with the potential-well analogy, enables us
to obtain the length £ and consequently the conductivity o
in terms of quantities such as the mean free path / and the
CPA conductivity og~SI, which are readily available.
Equation (4.3) interpolates successfully between the two
limits and thus covers the entire extended states region.
Note from Fig. 3 that the £ based on Eq. (4.3) seems to be
smaller than the numerical result near the critical point.
Although there is sufficient uncertainty in the numerical
work to prevent us from reaching any definite conclusion,
it is conceivable that the critical exponent for £ (and con-
sequently, for A) is not one as in Eq. (4.3) but slightly
larger than one.

It will be very interesting to investigate whether the for-
mula for the dc conductivity of a noninteracting disor-
dered electron system, which interpolates from the weak-
coupling regime all the way to the Anderson transition, is
retained in the presence of complicating factors such as
off-diagonal disorder, more than one orbital per site, topo-
logical disorder, and different types of disorder or lattices.
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