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The electronic wave functions of simple one-dimensional systems with a modulation potential in-
commensurate with that of the underlying lattice are determined by a direct diagonalization method.
The existence of the metal-insulator transition is also obtained by a renormalization-group method.
Numerical evidence for a fractal character of the wave functions is obtained and the fractal dimen-
sionality D is calculated as a function of the strength of the modulation potential ¥,. At the critical
point Vp==2¢, we find that D ==0.80+0.15. The wave functions can also be characterized by the lo-
calization length [, and the amplitude correlation length &.

In recent years, there has been much interest in crystal-
line solids with incommensurate lattice potentials.' 10
These systems lead to rich spectra and wave functions be-
cause they are, in some sense, intermediate between
periodic and random. Periodic potentials lead to extended
eigenstates, whereas random potentials lead to localized
eigenstates in one dimension (ID). Although there is no
rigorous proofs, the general belief is that almost periodic
potentials lead in 1D to a metal-insulator transition (An-
derson transition) at a critical value of the potentital
strength. Such a transition in the nature of the
eigenstates—which may be induced experimentally in the
same sample by, for example, external pressure—presents
a very interesting theoretical possibility that is worth in-
vestigating experimentally.

Within the subject of localization in disordered systems
the question of how to characterize the wave functions
has been under intense discussion.!'? A new way for
characterizing the wave functions of disordered systems
by their fractal dimensionality has lately been suggested!!
and has been used to determine the mobility edge separat-
ing localized and extended states. The almost periodic po-
tential in one dimension with its Anderson localization
transition is a very interesting system to study the fractal
behavior of the wave function at the mobility edge where
the upper cutoff length is infinite. The behavior of the lo-
calization length in the localized regime as well as the
behavior of the correlation length in the extended regime
is worth investigating.

In the present paper we show results of numerical ex-
periments on one-dimensional incommensurate systems
which produce a metal-insulator transition as the strength
of the incommensurate potential increases. We are able to
assign a fractal dimensionality to the eigenstates, and
through the fractal dimensionality we obtain the position
of the mobility edge.

The model we consider is

Encn+t(cn+l+cn—1)=ECn ’ (1)

where the energy at site n is ¢, =Vycos(Qn), C, is the
amplitude at site n, t is the hopping matrix element, ¥ is
the modulation potential strength, Q is the wave vector of
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the modulation, and the lattice constant is taken to be 1.
We also impose rigid boundary conditions to simplify di-
agonalization of Eq. (1).

To decide the nature of the eigenstates of the model in
Eq. (1), we first accurately calculated the density of states
(DOS) so the positions and widths of bands and gaps are
known. With the DOS known, by direct diagonalization
of Eq. (1} we obtained the eigenstates, and from its spatial
behavior one can decide their nature, i.e., whether they are
localized or extended. We also study the transmission
coefficient of the system as the size of the system N in-
creases for a given energy E, modulation strength ¥, and
wave vector Q. For localized states the transmission coef-
ficient approaches zero as n— o, while for extended
states the transmission coefficient is nonzero as n-—co.
Special care is required, for some extremely narrow bands,
in order to avoid calculating the transmission coefficient
at the gap and erroneously interpreting the result as show-
ing the existence of localized eigenstates. Finally, we have
shown numerically,* and Suslov® has demonstrated subse-
quently but independently, that there is a real-space renor-
malization transformation which maps the Hamiltonian
to itself and allows important conclusions to be reached.
It is indeed the consistency of the three complementary
techniques which allowed us to decide with confidence
about the nature of eigenstates.*

We have found that for the case where €, = ¥Vycos(Qn)
and Q is an irrational multiple of m, V. /t =2 is the criti-
cal modulation strength independent of E and Q. For
Vo> 2t all the states are localized, while for ¥ <2t all
the states are extended. For more complicated modula-
tions* such as

€, = VlcosQn + ¥ cos{2Qn)] ,

~ mobility edges have been found even in one dimension.

For a given value of ¥y and V), eigenstates corresponding
to high energies are easier to localize than those for low
energies. Of course, for high values of ¥V and Vi, all
eigenstates are localized.

The most successful technique in deciding about the na-
ture of eigenstates is the real-space renormalization or
block method that was introduced in Ref. 4. One can ap-
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proximate Q by 2wN,/M, (N, and M, are integers
without a common factor) so that after M, sites the po-
tential almost repeats. Consider the nth group of M,
consecutive sites (nth block). Within this group one can
define €\’ as the eigenvalue closer to the energy under
consideration and 7'V as the effective hopping-matrix ele-
ment between the corresponding wave functions of neigh-
boring blocks. We define ¢V= {4, | H |9, +.1) where ¥,
is the wave function of the nth block belonging to the
eigenenergy closer to the energy under conmsideration.
Since ¥, = 3,;Cn |i), where the ith summation is over
the sites of the nth block, one obtains t(”=tC,’:MC(,,+1)M.
C(n+1)u is the amplitude at the first site of the (r +1)th
block. In all the cases we examined e4!’ is, within numeri-
cal uncertainties, of the form V§’cos(QVn+-¢). This
shows that under this transformation the original Hamil-
tonian maps into itself with transformed values of the pa-
rameters yV=Vi /260 and Q') In Fig. 1 we show our
numerical results for the model with ¢, =Vycos(Qn) and
0 =0.7. For this value of Q we have that the first period
is M,=9. Therefore we diagonalize the 9X9 matrix and
find all the eigenvalues and eigenvectors. Within this
group we define €. as the eigenvalue closer to the energy
under consideration. In the results shown in Fig. 1 we
used E =2.0¢ as the energy under consideration. We con-
tinue diagonalizing the next 9X9 matrix and so on. As
we discussed before, £V =Cjly; C(n 1131, Where Cpy is the
eigenvector at the last site of the nth block and C,1m
is the amplitude of the eigenvector at the first site of the
(n +1)th block. By plotting €'V versus the index n of the
block, we obtain

eV =vPcos(QVn +¢) .

Thus, after the block transformation, the Hamiltonian
-was indeed mapped into itself. Using the new value of
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FIG. 1. V¥ /r'D versus V,/t for Q=0.7 and E =2.0t.

Vo=2t is a critical point.
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@Y, we can repeat the transformation by introducing
second-level blocks consisting of consecutive first-level
blocks. After the second transformation our unit of
length is L,=M;M,. In the case of Q =0.7, we find
that Q'Y ~2m(4/36), and consequently, M,=36. Suslov’
has demonstrated that the numbers M;,M,,... are ob-
tained by a continued fraction expansion of Q /2w, where
M, is essentially determined as the integer part of the in-
verse of the difference 1/8,_1—[1/8,_1], where 8, _; is
the terminating part of the continued fraction and
[1/B,_11=M, _, is the integer part of 1/8,_,. From
Fig. 1, note that V§'/t'V versus V,y/t increases very
quickly for V> 2t and decreases very quickly for ¥, <2t.
For Vy=2t, we have Vi’ =2tV i.e., V=2t is a critical
point. It is very encouraging that even with the first level
of approximation of Q/27 by the ratio of two integers
without a common factor gives a simple law for the
transformation of the coefficient ¥,. Our numerical re-
sults showed that for all the values Vy/2t>1,
v /260~ v, /2¢, while for all the values Vy/2f <1 and
VY 72tV « v, /2t independent of the values of E and Q.
Hence, by repeating this transformation it follows that for
Vo> 2t (V< 2t) the Hamiltonian maps finally into

lim VM /2t 5 (0) ,

n—w
which physically means that in the first case the states are
localized and in the second case they are extended. To
find the exact form of the transformation of the coeffi-
cient ¥y, we plot in Fig. 2 In(V4" /2¢V)) versus In(V,/2¢).
All the numerical results lie on a straight line, and there-
fore we have that )

v 260 =(vy /201 . @)

The exponent S is just 9, i.e., the first period one obtains
by approximating Q/27 as the ratio of two integers
without a common factor: S,=M . Note from Fig. 2 -
that the transformation law given by Eq. (2) is obeyed for
Vo> 2t and for Vy <2t as well. This transformation law
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FIG. 2. Logarithm of V§/2t"" versus logarithm of V,/2¢

for @ ==0.7 and E =2.0t. The straight line through the points
gives Vi1 7260~ (Vo /2¢). :
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is in agreement with the analytical l:gesults of Suslov,’
which also finds that yW=(p"*—V)* with S,=M,.
Thus for the simple case of €, = Vycos(Qn) we obtained a
metal-insulator transition as ¥, crosses 2f. Aubry has
suggested that the localization length /, is given by
2t
I.=1/In( Vo/2t)—->m as Vo—2t,

__ 1

- y(O)____l :
Suslov,’ using renormalization group ideas, found that the
localization length diverges near the transition in accord
with a power law, with a universal critical exponent equal
to unity. Note from the second part of Eq. (3) that same
law is obtained by expanding Aubry’s result for I, near
the transition Vy=2¢. The block transformation allows
an easy derivation of Eq. (3). Indeed after the nth
transformation we have [using Eq. (2)]

Iny™ =M, Inp* ~V=M,M,_, - - M,Iny®
=L,Iny@ . 4)

3

However, for ™ much larger than unity one can use per-
turbation theory to obtain the localization length which
then is simply equal to 1/In(y™) in units of L,. Combin-
ing this with Eq. (4), we obtain Eq. (3). We have numeri-
cally calculated the localization length /, and find that it
agrees very well with the form given by Eq. (3). Very
close to the critical point special care has to be taken in
order to correctly calculate /.. In particular, for
1/(Vy—2t)> 1000, we had problems calculating [,
correctly. Very close to the critical point we always have
new periods of larger and larger lengths, and as we in-
crease the size of the system to better calculate /,, we ob-
tain large fluctuations for the value of /.. In the three-
dimensional disordered systems where we have a metal-
insulator tramsition in the extended regime, one usually
defines a correlation length £, which describes the max-
imum distance scale on which the amplitudes of the wave
functions fluctuate appreciably. For the disordered sys-
tems £, as well as [, diverges near the mobility edge!®
with a power law and with a universal critical exponent
believed to be equal to unity. For the incommensurate
modulation in one dimension in the extended regime, it is
very tempting to define a correlation length £ also.

The transformation (4) allows us to show the existence
of a correlation length £ in the extended regime and to ob-
tain its dependence of V/2¢ for Vy/2t < 1. Indeed, when
y™, for large enough n, reaches a value y,, which is
much smaller than unity, the perturbation P is practi-
cally negligible, and from then on the wave function is
essentially uniform. Thus the largest length for which
there are still appreciable fluctuations in L, corresponds
to Iny™=Iny.. It follows then that £=L,, or using Eq.
(4), that

|y, |
§=Ln= In(2:/Vy) -~ )
The way § was defined does not fix a multiplicative factor
of order unity. This is reflected in the appearance of the

quantity y, in Eq. (5). One way to define y, is as the
point, where the tangent at the critical value in Fig. 1
crosses the horizontal axis. If we further assume that the
quantities B, are uniformly distributed over their range
[0,1] as Q varies, we obtain for the average value of
[Iny, |, {|lny, | ) ~0.5. Our numerical data are incon-
clusive regarding the value of £. This is due to the broad
crossover character of & and to the Q dependence of the
proportionality factor. However, our data are not incon-
sistent with a value of |Iny, | = 1. From Eq. (5) it follows
that

2t
2t—Vy

for 2t —Vy <«<2.

It has recently been suggested that the fractal dimen-
sion is a new way of characterizing the wave functions in
disordered systems.!! The quantity D can be defined if

£~ l Iny, I (6)
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FIG. 3. Fractal dimensionality D versus ¥,/t for different
values of Q and E=0: (a) ¢ =0.3; (b) @ =0.7; (c) superim-
posed results for five different values of Q (0.3, 0.4, 0.5, 0.6, and
0.7).
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the integral of the probability density |(r)|? within a

sphere of radius L is proportional to L? with D indepen-

dent of L. (») is the normalized wave function of the

disordered system under consideration. For a disordered

eigenfunction the result depends strongly on where the

center of the sphere is placed. To avoid this difficulty a

weighted average over all positions of the center is taken.’
The weight is the probability density of finding the parti-

cle at each point. Thus the fractal dimensionality was de-

fined as the L-independent exponent in the relation
A(L)=constL?, where 4(L) is the density correlation

function

L
A= [dr |9 |2 [Cdr | ge+n)?. %

For uniform extended states, the fractal dimensionality
coincides with the Euclidean dimensionality D =d. Thus
for extended states and L >>&, D =d; as a result a non-
trivial fractal dimensionality can be defined only for
L «<£. For localized states, a fractal dimensionality can
only be defined for lengths less than the effective extent of
the eigenfunction, beyond this length A4 (L) saturates ap-
proaching asymptotically one. Recently, Soukoulis and
Economou!! have calculated numerically the density
correlation function A4 (L) defined by Eq. (7) in order to
check whether a fractal dimensionality can be defined for
an eigenfunction in a discrdered system. Their numerical
results strongly suggest that D is well defined for length
scales L <<&, I.. The most interesting case is for d =3 at
the mobility edge, where both /. and & are infinite. The
fractal dimensionality at the mobility edge was estimated
to be 1.7+0.3. Using these fractal ideas, Schreiber'? cal-
culated the whole mobility edge trajectory for a three-
dimensional disordered tight-binding model with diagonal
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FIG. 4. Logarithm of the square of the wave functions versus
length n at E~0 and Q =0.3 for (a} Vy=1.50z, (b) Vo=1.99¢,
(¢} Vo=2.00¢, (d) Vp=2.00%5¢, (e) Vp=2.01¢, and (f) V,=2.02¢.
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disorder of Gaussian type.

For the one-dimensional incommensurate system given
by Eq. (1), we calculate the fractal dimensionality D as a
function of ¥V for a constant energy E. (We took E =0
as the energy under consideration in our numerical work.)
Figure 3 shows the fractal dimensionality D as a function
of Vy. For V3<1.95¢t, D=1, while for ¥V5>2.05¢t, D
drops below 0.5. At the critical point V=2, we estimate
that D =0.8010.15 independent of E and Q. A very in-
teresting feature of the fractal dimensionality D versus ¥V
as can be seen from Fig. 3 is that D stays constant very
close to 1 all the way to the critical point Vy=2¢, and
then just above the critical point, D drops rather abruptly

. and approaches zero.

The fluctuations in the value of D for different Q’s per-
mits doubts as-to whether the fractal dimensionality D is
a rigorous concept in the present system, where there are

- infinite but discrete scales of fluctuation. Nevertheless,

even if D is only an approximate concept, its systematic
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FIG. 5. Square of the wave function versus length n for
E~0.0,0 =0.3, and V=2.0t. The display of different por-
tions of the same wave function illustrate the self-similarity.
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rather abrupt drop at the critical point provides an easy
and convenient way to determine the position of the mo-
bility edge very accurately. It must be pointed out that
the narrowness of the critical region can be easily under-
stood from Egs. (3) and (6). Indeed, in order to observe
even approximately a fractal behavior, a sufficient num-
ber of length scales (let us say four) must be present
within the upper cutoff lengths £ or /.. In order for that
to happen we must have L, <§&,l., which implies (since
each M, is on the average equal to e) that

[1—V5/2t] <e *=0.02, ®)

which is consistent with our numerical results. This
abrupt behavior of D can be used as another easy way to
find critical points (mobility edges).

In Fig. 4 we plot the logarithim of the square of the
wave functions versus the lattice sites for different values
of Vy for E=0.0 and Q=0.3. Note that even for
Vo=1.99¢ [Fig. 4(b)] the wave function is clearly extend-
ed. The only difference from the corresponding wave
function at V,=1.5 [Fig. 4(a)] is the absence of fluctua-
tions in the latter. At V=2t [Fig. 4(c)] we see that the
fluctuations are more violent. We will study further the
wave function at the critical point below. As we increase
Vo to 2.005¢ [Fig. 4(d)] we obtain a localized wave func-
tion which has strong amplitude fluctuations, but there is
an overall exponential decrease. For ¥;==2.01t and 2.02¢
[Figs. 4(e) and 4(f)] we have clearly localized states. Now,
exactly at the critical point the wave function is self-
similar. In order to make the self-similarity clear, we plot
in Fig. 5(a) the amplitude of the wave function for 5000
sites; in Fig. 5(b) we plot the amplitude of the wave func-
tion for 2500 sites, and in Fig. 5(c) for 1000 sites. Note
that to a very good approximation the three figures are
the same, which illustrate the approximate scale invari-
ance.
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CONCLUSIONS

We presented results based on the scaling theory that
was developed* by two of us by considering blocks whose
size is equal to, or close to, the approximate periods of the
system. Each successive transformation maps the prob-
lem into itself, with y(")=(y(”))M". This law, which was
obtained numerically in Ref. 4, was derived analytically
later by Suslov.® From our experience with work in disor-
dered systems, we feel that this renormalization group (or
block method) is one of the most accurate and convenient
methods for obtaining critical points (mobility edges).

We have been able to assign, at least approximately, a
fractal character to the wave function of a one-
dimensional incommensurate system. The fractal dimen-
sionality D was obtained for different values of ¥, for
E =0. Our results suggest that D stays close to 1 almost
all the way to the critical point (¥,=2¢) and then drops
rather abruptly to small values. At the critical point,
Vo=2t, D =0.80+0.15. It will be very interesting to cal-
culate analytically D at Vy=2z. We have computed the
localization length /., and this agrees reasonably well with
Aubry’s result, /. =1/In(¥,/2¢). We have also obtained a
formula for the correlation length £ in the extended states
regime, and we have thus explained why the transition re-
gion around the critical point is so narrow. Finally, the
self-similar character of the wave function at V,=2¢ was
illustrated by the spatial behavior of the wave functions.
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