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We have carried out simulations of the magnetic properties of undoped La,CuQ,, using a classical
Heisenberg model for the Cu spin with a strong antiferromagnetic coupling J, in the a-c plane and
weak interplarie couplings. In the orthorhombic state, the coupling between nearest-neighbor spins
in the b-c and ¢-b planes are not equal. We found that the antiferromagnetic-to-paramagnetic tran-
sition temperature (Néel temperature) depends only on the difference of these two interactions, AJ.
For AJ >0.1]Jy |, Ty depends nearly linearly on AJ. When compared with the results of ordinary
mean-field as well as a renormalized mean-field theory, our Monte Carlo simulation gives a substan-
tially lower Ty for AJ 2 0.025[J, |. The relation between Ty and AJ of a three-dimensional simple
cubic lattice with in-plane antiferromagnetic interaction J, and interplane coupling AJ is also calcu-
lated using low-temperature spin-wave theory. The spin-wave calculation gives a better estimate of
Tx compared with our simulation results than the two mean-field-theory results.

I. INTRODUCTION

The magnetic ordering of the Cu spins into an antifer-
romagnetic, long-range ordered state in La,CuQ, has re-
cently been confirmed by a number of neutron scattering
studies.!~* While it has been proposed that magnetism
may play an important role in high-temperature super-
conductivity in the La, ,Sr,CuO, and YBa,Cu;Oq¢,,
families of materials, the study of magnetic ordering in
La,CuQ, is interesting in its own right. This system is
highly anisotropic with a very strong coupling between
Cu spins in the plane and very weak coupling between
planes. The system undergoes a tetragonal to ortho-
rhombic transition at a temperature greater than the
Néel temperature Tn. In the antiferromagnetic (AF)
state, the structure shown in Fig. 1 consists of Cu mo-
ments pointing “up’” and “down” in succession in planes
normal to the orthorhombic [100] axis, with the moment
directions freezing along the orthorhombic [100] axis.
Thus this system has interesting magnetic properties
which may be representative of a wider class of quasi-
two-dimensional antiferromagnetics. For this reason, we
decided to carry out a detailed study of the magnetism of
a classical Heisenberg model with interactions in the
range appropriate to the cupric oxides.

Since the Néel temperature can be quite high
[~200-250 K (Refs. 1-5)] depending on oxygen
deficiency, we decided to model the system with a classi-
cal Heisenberg spin at each Cu spin. The interaction in
the CuO plane is quite large (~1300 K).> In the high-
temperature tetragonal state, the interaction between
nearest-neighbor spins in the b-¢ and a-b planes are equal
and there can be no long-range magnetic ordering, even
though the spin-correlation length in the a-c¢ plane can
become quite large. As the temperature is reduced, a
transition occurs and the system transforms to an ortho-
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rhombic structure in which the lattice constant ¢ be-
comes greater than a. In this state, the magnetic interac-
tion J, is larger than J,, and the system has long-range
magnetic ordering below Ty in the state shown in Fig. 1.
Since the in-plane interaction is large, a weak net cou-
pling AJ=|J,| — |J, ] can produce a large change in
Ty
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FIG. 1. Illustration of the spin structure of antiferromagnetic
La,Cu0O,. Only copper sites in the orthorhombic cell are
shown. All three interactions are antiferromagnetic and
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In this paper we have applied mean-field theory, the
spin-wave theory, and Monto Carlo (MC) simulations to
study the magnetic ordering in orthorhombic qua81 -two-
dimensional antlferromagnets such as K,NiF,,% La,CuO,,
and La,NiO,.” Because the coupling in the CuO planes is

so large, we have used a renormalized mean-field theory,
in which the properties of the spins in the two-
dimensional planes are treated exactly but are coupled
only by a mean field to spins in neighboring planes. That
produces a value for Ty which depends only on the net
coupling AJ and not on the individual values J, and J, as
long as |J;| <0.8|J,|. To check this simple theory,
we have carried out extensive Monte Carlo simulations
on systems of size up to 18 000 spins. We find that while
Ty depends only on AJ, the renormalized mean-field
theory overestimates T’y by a factor of 2—3 depending on
AJ. Since the exact 2D X entering this mean-field theory
is close to the in-plane X of the 3D simulations, this error
can arise only from the omission of interplane correla-
tions and the attendant fluctuations.

We also carried out a low-temperature spin-wave cal-
culation for T). Because only the net coupling between
planes is important, we simplified the calculation by
studying the anisotropic Heisenberg model on a simple
cubic lattice. We generalized the analysis of Takahashi,?
who studied the isotropic case, to include anisotropic in-
.teractions. In this approach, Ty is like a Bose-Einstein
condensation temperature below which long-range order
results. We find this theory agrees fairly well with our
simulations over a wide range of coupling AJ.

In Sec. II we describe the model and our simulation
procedure. In Sec. ITI, we present results for both the re-
normalized mean-field theory and for our simulations.
The results from the spin-wave calculation for anisotrop-
ic systems is presented in Sec. IV. A summary of our re-
sults as well as a comparison with experimental results is
presented in Sec. V. Finally, we present details of the
spin-wave theory in the Appendix.

II., MODEL AND METHODS

We have studied the classical antiferromagnetic
Heisenberg model on a face-centered orthorhombic lat-
tice, Fig. 1. This model represents the Cu spins in the un-
doped La,CuO, compounds. The nearest-neighbor cou-
pling J, in the a-c plane is antiferromagnetic and quite
strong, Jo~=1300 K. The two couplings between the
planes, J, ad J,, are also antiferromagnetic, but much
weaker than J,. The Hamiltonian of this model is

H=—ZJOSi'sj_EbJ]Si'sj—bEJZSi.sj 5 (1)

where s; can point in any direction but has magnitude 1.
Here the summations are over the nearest-neighbor spin
pairs in the a-c, a-b, and b-c planes, respectively, and neg-
ative coupling J; represents an antiferromagnetic in-
teraction. In the orthorhombic state, J; and J, are not

equal, and we can define AJ=|J;| — |J, | and define

temperature in units of | Jg | .
We used the Monte Carlo method to study this model.’
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For simulations on our IBM 3090/180 computer, a spin
was chosen at random and rotated by a small random
amount subject to a heat-bath algorithm which we used
to determine whether to accept the change. The new spin
direction was determined as the following, s;—(s;
+R)/|s;+R |, where R is a random vector with a fixed
length |R|. The energy change AE was then calculated
and the spin flipped with probability e ~2E/kT/(1
+e~AE/KTy The | R | was chosen so that the acceptance
ratio of change was between 0.4 and 0.6. One Monte
Carlo step (MCS) was defined as N attempted spin moves
where N is the number of spins in the system. We also
carried out simulations on a Cray-XMP supercomputer
for our largest samples. To utilize the vector nature of
the Cray, we divided the total spins into four groups with
N /4 spins each (in each group, there are no nearest-
neighbor spins). We then attempted to flip each group at
one step, using the same heat-bath algorithm to deter-
mine whether the move would be accepted or not. In this
modified parallel process, we gained a factor of 10 on the
speed. In all of our simulations, we used periodic bound-
ary conditions in all three spatial directions. We studied
samples with sizes N =600 (10X 10x6), 4000
(20:<20< 10} and 18 000 (30X 30X 20), with the larger di-
mensions in the a-c plane, though most simulation runs
were on N =18 000.

When AJ =0 the system is highly degenerate because
one can reverse all the spins in one layer without chang-
ing the energy. When AJ=£0, the model is nondegenerate
(aside from the global rotational symmetry), and at T =0
has long-range ferromagnetic order in the b-c¢ plane and
antiferromagnetic (AF) ordering along a (since
|Jy| > ]J, |, AF ordering is more favorable along a).
With this convention, we can define the staggered magne-
tization M

1 iqr;
= —N— ; Sie ’ (2)
where q=(27/a)(1,0,0) and ordinary magnetization
M=(1/N) 3 s,;. In the ground state M, =1 and M=0.

M. s the order parameter which can be used to describe
the order-disorder transition. Along this line we can
define the staggered susceptibility X as

xs=(<M3)—§MS>2)/T, 3)

where M?=M, M, and (M,)=(|M,|). Because of
the global rotational symmetry of the spins and the finite
sample size, it is more appropriate to average over ampli-
tudes than over the vector itself. The ground-state ener-
gy per spin is B, =2J, —2AJ.

We used | M | to determine the AF to paramagnetic
transition or Neel temperature T'y. In most of the runs,
we started from the ground state and increase the tem-
perature slowly. For temperatures far from the transition,
we have averaged 2000 MCS per temperature after allow-

ing 500 MCS to equilibrium. Near the critical region, we

have typically run 10000 MCS per temperature. To be
sure the system was in equilibrium near the transition, we
made runs in which we have increased the temperature

slowly to T~2Ty and then decreased the temperature to
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FIG. 2. Staggered magnetization |M,| vs temperatures
T /J, for three sample sizes. For N =4000 and N =18 000, the
results are almost identical.

below Ty. Both paths gave the same transition tempera-
ture within a few percent.

To test the finite-size effect, we ran several samples
with the same J’s but different sizes, as shown in Fig. 2.
We see that there is little difference between runs for
4000 and 18 000 spins. Thus the results of our runs, most
of which have been on N =18 000 systems, should give a
reasonable estimate for Ty, accurate to within a few per-
cent.

III. RESULTS

The first interesting result we have is that the transi-
tion temperature T depends only on the difference of
the two interplane couplings, when both J, and J, are
much smaller than J,, as shown in Fig. 3. For different
pairs of J; and J,, and fixed AJ, the curves for M, are
nearly identical for |J,| <0.8|Jy|. Thus we can see
that the transition temperature depends only on AJ. This
result is in agreement with the mean-field calculation,
where the 3D Néel temperature only depends on the 2D
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FIG. 3. Staggered magnetization | M, | as a function of tem-
perature T /J, for different pairs of interactions J; and J,, but
with same AJ=0.1. Note that Ty depends only on the AJ, ex-
cept for J,=0.9, J, =0.8, where T is slightly suppressed.
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susceptibility and the net coupling between the planes,
provided the interplane coupling is small. We have also
calculated the energy per spin, specific heat, M, and stag-
gered susceptibility as functions of temperature. These
are shown in Fig. 4 for AJ=0.1. The peaks in the
specific heat and the staggered susceptibility curves give a
clear indication of the phase transition at the Néel tem-
perature Ty.

For different values of AJ, we show a sequence of M_’s
in Fig. 5. As AJ increases, Ty increases since the net in-
terplane interaction each spin feels favors the antiferro-
magnetic state. As AJ decreases, the spin-correlation
length increases in the a-c¢ plane and become very much
larger than our sample size before Ty is reached. .Thus
the smallest AJ we can study is limited by the finite size
of our sample when the correlation length in the a-c plane
is the same order as the sample size. Obviously, when
AJ =0, there is no net interaction between planes. The
system should behave as a set of uncoupled 2D antiferro-
magnetic Heisenberg models, which are known to have a
zero transition temperature. To test this idea, we simu-
lated a model with AJ=0 (J,=J,=0.1J,). After start-
ing the system in its ground state (M, =1), we heated the
system up slowly to T =1.0J, where M;=0, and then
cooled the system back down to low temperatures. The
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FIG. 4. Temperature dependence of the staggered magnetiza-
tion M, the staggered susceptibility X,, energy per spin E, and
the specific heat C=dE /dT for AJ=0.1 and N =18 000.
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FIG. 5. Staggered magnetization vs temperature T/J, for

different values of AJ. Note that as AJ increases, Ty also in-
creases since the net antiferromagnetic interaction between
spins is increased. ’

staggered magnetization M, remains close to zero (not as
in the case with a finite transition temperature in which
M; increases as the temperature is lowered below Ty).

The relation between the Ty and the AJ is very impor-
tant, and results from our simulation are shown in Fig. 6.
Ty increases rapidly as AJ increases for small AJ, but for
AJ > 0.1, Ty is nearly linear with AJ.

To understand this behavior of Ty, one can carry out a
simple mean-field calculation in which the field that each
spin feels is just determined from the sum of its interac-
tions with its neighbors. For a Heisenberg model, this
gives Ty=3 (—3,.J;), and thus we have for our model,
Ty=(—4Jy+4AJ)/3. For the case AJ=0.1, this result
gives Ty=1.47|J, |, which is much higher than from
our simulation. Obviously for AJ small, this simple
mean-field approach is not good since it does not correct-
ly take into account the strong fluctuations which destroy
long-range order in the limit AJ —0.
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FIG. 6. Néel temperature Ty as a function of the interplane
coupling AJ. The lower curve is the Monte Carlo result while
the upper curve is determined from the renormalized mean-field
theory Eq. (6).
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We notice that if we put J;=J,=0, then this model
becomes a 2D antiferromagnetic Heisenberg model, and
the susceptibility X, becomes X?°. When AJ js small and
since only AJ is important in determining Ty, one might
try a renormalized mean-field theory!® taking into ac-
count the fact that X0 is known. Each plane has a 2D
susceptibility ¥2P, the coupling between the planes is just
the net interaction each spin feels, which is 4AJ. (Since
we have eight neighbors, there are four pairs AJ.) Thus
we have for all orders of interactions

Xe=XP+XP4ATXP - -+ . )
After the geometric summation, we find
X=X /(1—4X?PAJ) , (5)

where X?P is the susceptibility for the 2D AF Heisenberg
model. At the Néel temperature, the susceptibility
diverges, and the expected transition temperature can be
obtained from

4XP(Ty)AT=1 . (6

This result can also be obtained straightforwardly simply
by factorizing the interaction between spins in different
planes but treating interactions within planes exactly.
From earlier studies on the 2D Heisenberg model, we
know how Y?P behaves as a function of temperature. By
using the high-temperature expansion result for X?° for
(T >0.8) and spin-wave theory for lower temperature, we

- can obtain results for Ty for different AJ’s. The upper

curve in Fig. 6 is the renormalized mean-field result,
while the lower curve corresponds to our Monte Carlo re-
sult. For T >0.8, the correlation length for the 2D
Heisenberg model is smaller than our sample size, and
finite-size effects are not important. We can see that the
mean-field curve is higher than the Monte Carlo simula-
tion, and, at AJ=0.1, the difference is about a factor of
3.

Wiile it is easy to understand why this renormalized
mearn-field theory breaks down for large AJ, it is some-
what surprising that it does not work well in the range of
AJ of interest. One reason for the discrepancy could be
the suppression of the 2D fluctuations by the interplane
interaction. Since it is the 2D fluctuations which lead to
large X,p, the susceptibility is thereby reduced and thence
Ty. To investigate this point, we calculated the in-plane
susceptibility X 2P in our model for T > Ty,

TX §D= ﬁ;( 2 <M?,lt)'M§,lt) >)layer > e))
H
where ( ), represents an average over the layers, and
M?P is the staggered magnetization in one layer. In Fig.
7, for AJ=0.1, we can see that there is a slight supres-
sion of the X?P at high temperature. At low temperature
due 1o the ordered phase in the 3D model, X 2P diverges
below Ty. But the amount of supression is small and not
enough to make a factor of 3 difference in the estimated
Ty. Indeed, X?P and ¥Z° are essentially equal at the
mean-field result for Ty. The simple renormalized
mearn-field result, Eq. (5), is thus not valid for the range of
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FIG. 7. The 2D susceptibility TX, Eq. (7) in the 3D model,
compared with true 2D X,p determined from high-temperature
series expansion for the 2D Heisenberg model. At low tempera-
ture, due to the ordering X,p as well as X3p, diverges, while at
high temperature, the X,p, get suppressed slightly from X,p.

AJ studied here, most probably because of the neglect of
short-range interplane correlations caused by the relative-
1y large values of AJ explored here. At lower tempera-
tures, the exponential dependence of X*P~exp(4s/T) in
the classical Heisenberg model continues to lead to
overestimation of T for small AJ. For example, to ob-
tain Ty~0.1 (as found in the experiments), requires AJ
to have the unrealistically small value of 10~* for X?P
from spin-wave theory or 10~* for ¥?P from the more
accurate Shenker and Tobochnick!! formula. Of course,
it is the spin-1 quantum Heisenberg model which applies
to the real materials. A simple quantum spin-wave calcu-
lation for X yields the result X cexp[4ws(s-+1)/T].
Since s(s + 1) is 3 instead of unity as in the classical case,
the value of AJ increases somewhat to 10! for T=0.1.
A recent quantum Monte Carlo simulation'? suggests, on
the other hand, that X diverges even more strongly than
the classical result, a result which we reject as incorrect.
An interesting possible explanation is that proposed by
Chakravarty et al.!® that zero-point fluctuations reduce
.the factor multiplying 47 /7T in the exponential below
s(s +1), a point we shall return to in the conclusions,
Sec. V. '

From our results above, we can see that the Néel tem-
perature depends only on the AJ=J,—J,, so it is not
necessary for J, and J, to be antiferromagnetic. Both J;
and J, could in fact be ferromagnetic, as long as AJ is
kept fixed. To see how this would affect experimentally
measurable quantities, we carried out additional simula-
tions for two situations: (i) J,,J, ferromagnetic and (ii)
J,,J, antiferromagnetic, with AJ=0.1. We found that
both the staggered magnetization and the specific heat
are unchanged, and the only quantity which shows any
difference is the regular suseptibility defined as

Ll s (mz
TX—NEi(M,) (8)

as shown in Fig. 8. wClearly the ferromagnetic model has
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FIG. 8. TX as a function of T for both cases; (i) both J,,J;
are antiferromagnetic and (ii) both J,,J, are ferromagnetic with
the same value of AJ=0.1. The susceptibility is slightly larger
when both interactions are ferromagnetic.

a X larger than the antiferromagnetic case. However,
neither TX shows the anomalous behavior near Ty as ex-
hibited by the experimental data.!*

IV. LOW-TEMPERATURE SPIN-WAVE CALCULATION

When the interplane coupling AJ is small, this model
can be approximated by a Heisenberg model on a simple
cubic lattice, with in-plane interaction J and interplane
interaction J', since Ty depends only on AJ. The Hamil-
tonian for this simple cubic model is

H=—J3s;'s;—J 3 5885, 9)
i Y )

where the first sum is over four nearest neighbors in the
plane and the second sum is over the nearest-neighbor in-
terplane interactions. On the simple cubic lattice, we can
carry out a simple gauge transformation and treat the
spin interactions as ferromagnetic, in which case
J=|Jy| and J'=2AJ. This makes the spin-wave
analysis easier. The ratio of the two interactions J'/J=y
should determine the transition temperature of the model
When ¥ =0, we have a two-dimensional model with no
interplane interactions, and the transition temperature is
zero. When ¥ =1, we recover a simple cubic Heisenberg
model with equal interactions,!® for which the transition
temperature is known to be 7.=1.35. We also did some
MC simulations on the anisotropic simple cubic model,
and found that the transition temperatures almost identi-

cal to that on the orthorhombic lattice with J'=2AJ.
Following Takahashi,® we can treat our classical spin
system, with in-plane ferromagnetic interaction J and in-
terplane interaction J' <J, by using modified spin-wave
theory. The details of the derivation are given in the Ap-
pendix. The result is shown in Fig. 9. In the temperature
range of our Monte Carlo simulation, the spin-wave
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FIG. 9. Results for the transition temperature T, /J from the
low-temperature spin-wave theory (solid circles) vs y =J’ /J and
results from the simulations on the simple cubic lattice (trian-
gles) and on the orthorhombic lattice (open circles) with

=2AJ.

theory on the simple cubic lattice can produce a much
better solution than the mean-field theory, although the
spin-wave Néel transition temperatures are not quite the
same as in our Monte Carlo simulations. For T, ~0.1 we
found a value of AJ=10"3 for T,=0.1. Note that a
similar calculation is possible for the LaCuO, orthorhom-
bic lattice, but it requires solving three simultaneous in-
tegral equations. Here we ignored the small orthorhom-
bic distortions and only considered the simpler case.

V. CONCLUSIONS AND DISCUSSION

Through our Monte Carlo simulations on the classical
Heisenberg spin system on the orthorhombic lattice, we
have found that the Néel temperature for the
antiferromagnetic-to-paramagnetic transition depends
only on the difference of the two interplane interactions,
AJ. In the temperature range T >0.5, the mean-field
theory result is a factor of 3 higher in estimating T.
The error occurs in part because the 2D fluctuations in-
creasing the 2D staggered susceptibility are suppressed
by the interplane interactions even for small interactions.
In this temperature range, a Heisenberg model on the
simple cubic lattice with interplane interaction
J'=2AJ <J gives a reasonable approximation. The im-
provement results from taking into account the increas-
ingly 3D character of the fluctuations. At the lower tem-
peratures of interest for smaller interplane interactions,
the correction Iength is much larger than the sample size
we can handle using Monte Carlo techniques. In this
temperature range, we are forced to rely on the aniso-
tropic simple cubic spin-wave theory.

While the calculations above are applicable to any sys-
tem of spins strongly coupled in two dimensions but
weakly coupled in the third dimension, the application to
La,CuO, is complicated by the fact that this system has
recently been found!® to have a weak antisymmetric in-
plane exchange of the Dzyaloshinsky-Moriya form.!”
This gives us to a very small ferromagnetic in-plane cou-
pling and is necessary to explain the “peak’ seen in the
temperature dependence of X below Ty.> The results

fail for the classical case? One can argue that the con-
sistent picture developed by these authors is insensitive to
variations of a factor of 3 in Ty. Effective decoupling of
adjacent 2D planes by the quantum zero-point spin fluc-
tuations is a more plausible explanation.

Chakravarty et al."® find a value of AJ of ~10~3|J, |.
Assuming that J; and J, have an exponential dependence
on atomic position, with a decay distance of order a typi-
cal ‘onic radius for the species involved in the superex-
change, we can estimate AJ as |J; | (Au /a), where Au is
the difference in Cu-Cu separation between interaction 2
and interaction 1. The observed value of Au /a of ~ 102
implies that |J, | ~1073|Jy| or of that order. Is this
small value of |J; | reasonable when |J, | is as large as
1300 K in the light of conventional superexchange
theory. Considering that J,; arises from a sixth-order
process and that many comparable values of superex-
change are known, we conclude that such a value is
reasonable. On the other hand, J, arises from a fourth-

‘order process in the Mott-Hubbard insulating limit. Us-

ing values of the transfer integral taken from the band
calculations'® and standard fourth-order theory, one is
forced to conclude that the effective U for the Cu dxz_yz

orbital is about an order of magnitude smaller than the
bare Cu U and that one is quite close to the Mott-
Hubbard transition. For La,BaCuQ,, however, it would
be more accurate to think of the transition as a
hybridization-dehybridization transition.

A value of Au/a of ~1072 is of order of or smaller
than amplitudes of atomic vibration at T, and the varia-
tion of AJ caused by the vibrations of the atoms involved
in tke superexchange can be significantly larger than the
mean value AJ=|J, |(Au/a) irrespective of the value
one assigns to |J; |. This concern, which could in prin-
ciple invalidate the approaches of Chakravarty et al.,!3
and of the present paper, can be put aside after one real-
izes that all of the modes affecting the relative displace-
ment of the atoms involved in J, and J, are optical
modss involving oxygen and therefore of relatively high
frequency. Motional narrowing thus eliminates any

- significant effect of the thermal or dynamical disorder in

J, and J,, leaving only the mean value of AJ,
| J1 | Au /a, of importance.

APPENDIX

We used a modified spin-wave theory to calculate the
order-disorder transition temperature of a classical spin
system on a simple cubic lattice with J'/J =y <1. We
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begin with the quantum version of Eq. (9), replacing s; by
S; to denote quantum spins. We follow the derivation by
Takahashi who studied the case y=1 and apply the
Holstein-Primakoff transformation to order S ~!, where S
is the magnitude of spin S;. The product operator S;-S;
is then expressed as follows:

S,'Sj=SZ—S((1!*—LI;‘)(G,—GJ)
—--};[a,-*aj*(a,-—aj)z—{—(a —af)aa;]+0(S -h,
(A1)

where a jf" and a; are the creation and annihilation opera-

tors of bosons at the jth site. Following Takahashi, we
can define the ideal spin-wave density matrix:

p=Cexp [— S g(k)agay ] . (A2)
k

__ W _ _ explg(l)]
og (k)

{exp[g (K)]—1}?

S|=S— =3[ 1—explik-8,)17 ,
N k

where i=1,2 and g;(k)=3,[1—cos(k-8,)], p is the
' Lagrange multiplier, 8, is the lattice vectors to nearest
neighbors in the plane, and 8, is the lattice vector to the
nearest interplane neighors, Now we have three coupled
equations for three unknowns, 8,55, and u,

-1

1 JSe;+J'S5e,—

e Y — A
N = [P 7 1, @an

cos(k-8,)

,1=_1—E r ' I 1 v ER (As)
N < exp[(JS|g,+J'S5e,—u)/T]~1

g 1 cos(k-8,) :

2'—_"2 ) - (Ag)
N k exp[(JS1£1+J S252 ‘LL)/T]—‘].

By taking the limit of infinite S, we can treat the classical
case. Replacing J and J’ by J/S? and J'/S?, setting
S; /8 =S;, and expanding the exponentials in (A7)—(A9)
we can rewrite Egs. (A7)-(A9) in the form

—%—:%2[sl(k)+;vr52(k)—yS/Jxl]_l (A10)

k

x2 cos(k-§)) ALD

t _Nzk" g, (k)+yrek)—pS/ix, _
(k-5,)

Fi¥z _ L S (A12)

t N k' &,(k)+yreyk) —uS /Jx, ’

where x,=S1/S, x,=83/S, y=J'/J, t=T/J, and
r=x,/x;=S5,/8;. Since pu <0, the condition S,=0
cannot always be satisfied at low temperatures. At criti-
cal temperature T, we obtain a phase transition to states

with S,70. As in Bose-Einstein condensation, T, is
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= —[—-JS', 3 [1—cos(k-8;)]—J'Sy 3 [1—cos(k-8,)]+ Tg (k)—p

The expectation value of S;-S; then becomes

2

TrpS;S; /Trp= S—%E(l—eik'r“)ﬁk ,  (A3a)
k

= {explg(K)]—1}~ (A3b)

The entropy & and magnetization S, are then given by

k
E;{ﬁ%k)]— In{l—exp[—g(K)]}, (A4)
(AS5)

SZ=SN—Enk=O .
k

Minimizing the free energy W=FE —§T with respect to
g (k) under the condition S, =0 gives

[ .

defined by the condition p=0. Therefore, at T,, we have

x /t=N"13 [e,(k)+yre(k)]171, (A13)
k

x3/t=N"13 [1—g (k) /4l (k) +yretk)]™1,  (Al4)
k

x1%,/t =N""3 [1—ey(k)/2][e (k) +yre,(k)]! .
k
(A15)

In the limit of large systems, the sum in Egs.
(A14)—(A16) can be replaced by integrals. For the simple
cubic lattice it is straightforward to carry out the in-
tegrals over k, and k,, and Egs. (A13)—(A15) can then be

_written as
xy/te=I{y,r), (A16)
x1/t,=12+yrI(y,r)—(yr/2),(y,r)—% , (A17)
xyxy/t.=I,(y,r), (A18)
where
I(y,r)= iy f "dz k K (k
Iz(ly,r): (2717_)2—fohdz cos(z)kK (k) , (A19)

k={14(yr/4)2—2cos(z)]} !

and K (k) is the complete elliptic integral of the first kind.
These expressions can be combined to eliminate », and
then solved numerically to give T, as a function of y as
shown in Fig. 9.
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