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Scaling of the conductances and the finite-size localization lengths is generalized to anisotropic systems and
tested in two-dimensional systems. Scaling functions of isotropic systems are recovered once the dimension of
the system in each direction is chosen to be proportional to the localization length. It is also shown that the
geometric mean of the localization lengths is a function of the geometric mean of the conductivities. The ratio
of the localization lengths is proportional to the square root of the ratio of the conductivities, which in turn is
proportional to the anisotropy strengthin the weak scattering limifS0163-182@07)52132-1]

Scaling theories have been successfully applied to th&ecently, the problem of Anderson localization in aniso-
problem of Anderson localizatidrf involving the effects of  tropic systems has attracted considerable attertirargely
disorder on the nature of the electronic wave function. Thedue to the fact that a large variety of materials are highly
most remarkable result of the scaling theory is its prediétion anisotropic. It was recently sho®mhat in a highly aniso-
that a continuous metal-insulator transition exists in thredropic system of weakly coupled planes, states are localized
dimensions, and all the states are localized in two dimenin the direction parallel and perpendicular to the plane at
sions, in the absence of magnetic field and spin-orbit interexactly the same amount of critical disorder, in support of
action. The essential hypothesis of the one-parameter scaliije one-parameter scaling theory which excludes the possi-
theory of localization is that the rate of change of the con-bility of having a wave function localized in one direction
ductance when the size of the system changes is controlleghd extended in the other two. However, several issues re-
by the conductance alone. The critical conducta¢ghat  garding the relation between the conductances in different
separates true metals from insulators is estinfatede G,  directions were raised. Most importantly, the question of
=0.1(e?/%). The scaling function should also be universalscaling of conductances and localization lengths was not
within a class that is characterized by a few general symmeresolved Although anisotropy is known not to change the
tries of the governing Hamiltonian. The scaling theory re-universality and thus the critical behavior of the systetine
sults are supported by a large number of numerical stfidiexact form of the scaling function, on the other hand, is
in d=2 and d=3. Most notably, finite-size scaling expected to depend on the anisotropy in the form of aniso-
calculation$ on the transmission properties of a quasi-one-tropic physical parameters such as anisotropic hopping inte-
dimensional system explicitly demonstrated the existence ograls or geometrical aspect ratiths.

a universal scaling function close to the critical regime. Extending the scaling argument to an anisotropic system,

Most of the previous work involves isotropic systems.we assume that the logarithmic derivatige, of the dimen-
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sionless conductanag, in any direction will be a function

10'

of the conductance in that direction as well as other direc- e
tions, e
5 10°
dlogg; S
Bi dloga BI({gI}) , (1) ‘g-' 10
E” &—1=1.0 E=0.0] ]
wherea is an appropriate length scale. All tlgg become 5 D 106 E=00
relevant scaling parameters. All other physical quantities, ¢ 10* < 103 E=15]7
such as anisotropic hopping integrals or anisotropic geo- £ Ry
metrical shapes, should enter only through the conductance: S I Lo T
0; . Exactly the same argument can be applied to the scaling 10° 102 1g" 10° 10" 100 10 10t 10
function of localization length, obtained from transfer-matrix X
calculations with a quasi-one-dimensional geometry of cross ) ) ) )
sectionM; X M, FIG. 1. The numerically determined scaling function for the 2D
! anisotropic system for different anisotropic constantsifferent
Ni(M{ M) M. M energiesE, and disordeiV. The solid line through the data is the
SRR (_J _") , (2) 2D isotropic scaling function. The axis is&\;(M;)/&M, while
& fj &k thex axis isM;/¢;. The indexi andj can be either the parallel or

. . . L . . . the perpendicular direction, respectively.
where)\; is the finite-size localization length in the direction perp P y

i, and¢ (1=1,2,3 is the localization length for the infinite
system. The fundamental assumption in E2}.is that local- Ai(M;) _ éf(%> @)
ization lengths provide the only characteristic length scale. M; &\ &)
Once the characteristic lengths are measured in terms of the
localization lengths in the corresponding directions, the scalwheref(x) =h(x)/x is the scaling function for isotropic sys-
ing behaviors of the system within the same universalitytems. We have used the transfer-matrix mefttoccalculate
class are governed by the same equation. the finite-size localization length\;(M;) for many M;
The scaling functiong; and h describe the behavior of (i,j= 1,2) (M =24, 48, 96, 120, 150, 30@ndW=2-14 and
both systems with isotropic Hamiltonians but noncubic ge-severalt andE, for both directions. Figure 1 shows that all
ometry, as well as systems with anisotropic Hamiltoniansof our raw numerical data for bot]n','vI and\y, for different
Scaling in anisotropic systems in general is not known. Onlyanisotropiest, different disordelW, and different energies
when the conductances in all directions are the same, thep, follow one universal curve, by appropriately choosing the
the scaling function; will be exactly the same as that of a |ocalization length in the two directionsf and &, . The
cubic isotropic system. For an anisotropic system, this cagolid line through the data in Fig. 1 is the 2D isotropic scal-
only be achieved by choosing an appropriate geometryhg function. This is a direct confirmation of the scaling re-
which might not be knowra priori. As an example, we will  |ation Eq.(4).
see that indeed such a procedure works in a system with An important consequence of E@) is that at the critical
highly anisotropic hopping. We will demonstrate that in two- point, if any, the geometric mean of the ratio of the finite-
dimensional systems, Ed2) can be applied straightfor- size localization length to the cross-section width is a con-
wardly such that all the data are described by the scalingtant. This was indeed fouhdo be true but interpreted in-
functions of the isotropic system. Furthermore, we will alsostead as a result of possible conformal invariance. We point
show that the geometric mean of the localization lengths is @ut that at the critical point, the geometric mean of the con-
universal function of the geometric mean of the bare conducductances along the different directions may not be a con-
tivity, and their ratio can also be estimated in the weak scatstant. This behavior of the conductances is different from
tering limit. These results follow directly from applying the that of \,,/M and needs further study for its complete un-

basic idea of scaling theory. derstanding.
We consider the following Hamiltonian for an anisotropic  To further test the scaling idea we have calculated the
2D disordered model: conductances in the two different directions for our aniso-

tropic system. From the multichannel Landauer formti,
G=(e%/h)Tr(t"t), wheret is the transmission matrix. With
anisotropic hoppings, one should choose a geometry other
than the square such that the conductance is the same in all
wheren labels the sites of a square lattice. The on-site enerthe directions and then scale up the size of the sy&t&he
gies €, are independently distributed at random, within anconductance should remain isotropic if one parameter scaling
interval of widthW. The second term is taken over all pairs theory is correct. We have tested this idea in a 2D system
of nearest-neighbofNN) sites, and the hopping integral with t=0.1. The ratio of the two localization lengths was
t,m=1 ort (<1), depending on hopping directions. As a found to be 10 aW=3.6. We have scaled up the system of
convention, we have assigned the direction with the largea rectangle of sizé X N by a factor of 4, and from Fig. 2,
(tnm=1) and the smallt,,,=t) hopping value as the paral- one can clearly see that although the conductance becomes
lel () and the perpendicularl() directions, respectively. extremely small it remains isotropic, in agreement with the
In two-dimensional systems, E(R) can be written as predictions of the one-parameter scaling thebryor a

H:; en|n><n|+§ tamNY(M|, 3
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FIG. 2. The conductancé& in units of €2/h of an anisotropic " s ‘ L ‘ ]
systemM XN, versusM for t=0.1 andE=0. Notice thatG along 102 10" 10° 10'
the two directions is exactly the same. <o, 0 >'"

square geometry f.ind with the_ same paramete_rs as in Fi_g. 2, FIG. 3. The product of the Fermi surfa&g with the geometric
the conductances in the two directions would diverge rapidly, aan of the localization lengthig, £)“2is plotted versus the geo-

as the system size scales up. . _metric mean of the bare conductivitiés,, o)/ for all the ener-
Another length rescaling aspect can be seen by considegiesg, t, andw.

ing the self-consistent theory of localization. It was shown in

an earlier worR that in order for the localization criteria to how the geometric mean of the localization length depends
be the same in all directions, the length scale has to be chgy, the geometric mean of the bare conductivity in a universal
sen proportional to the square root of the bare conductivityfaghion, independent of the anisotropy, energy, and disorder.
This leads to an equation for the metal-insulator transitionrpese results are a strong confirmation of scaling in aniso-

that is exactly the same as that of the isotropic system, eXyopjc systems. Notice that the geometric mean of the con-
cept that both the bare conductlwty ar_ld the effectlv_e latticeyy,ctivities (o) is the appropriate quantity that gives the
constant are replaced by their geometric means. A direct COnsy e results as in the isotropic case. It is therefore appropri-
sequence of. this formulatpn is that the geometric mean of; that(c), will be used in the interpretation of experi-
the localization(or correlation lengths should be only a entsin highly anisotropic systems.

function of the geometric mean of the bare conductivities, The ratio of the localization lengths can be obtained by

€., carrying the length rescaling idea further. We can see that the
(&)=t Y 5) conductances in all the directions should be the same, if the
o= Ti({00)g)/St, dimension of the system is proportional to the localization
Where< >g denote the geometric mean of the values in théength in that direction. This ImpIIeS the fOIIOWing relation:
two directions.o is the bare conductivity an&; is the
Fermi-surface area that enters through the relatign & (o 1/2_ aio| M7 @i\
~S;/. / is the mean free patH, is a function that can be & o \ai) @)
obtained via the potential well analogPWA) or the self-
consistent theory of localizatioh.Using the PWA, ¢ o is the exact value of the scale-dependent conductiwity,
=2.7% exd m’hoyl/e?] was obtained? is the bare conductivity which can be calculated within the
Equation(5) can be easily checked in the weak disorderCPA, ¢; is the correction factor of the bare conductivity in
limit, at which the geometric mean of the bare conductivitythei direction. It is very difficult to calculate the correction
can be shown to be,=15\2t/7W?, within the coherent factora;, butit approaches one in the weak scattering limit.
potential approximatiofiCPA).* For the 2D anisotropic sys- N Fig. 4, we show the results o, /t§ versus W for
tem, S{(E=0)=4mJ1+t2. We have plottedS(£, &)Y different anisotropies and energie&. In the weak disorder
versus 152t/7W2, and find that the data fall into one uni- liMit, we can approximater by oo, and this is shown as
versal curve for all the different anisotropiesnd disorder 0PN Symbols in Fig. 4. Notice that n the weak disorder
W. This weak scattering limit behavior of the geometric lMit, W — 0, and fort — 0, o, /gg~t%, and by using Eg.
mean of the localization lengths versus the geometric meaff): One obtains for the ratio of the localization lengths,
of the conductivities is very suggestive of the way the local-61 /€|~ t. This behavior is clearly seen in Fig. 4 for large 1/
ization lengths have to scale. The full expression, valid forV- Agreement with the CPA results for the conductivity are
all disorder strength, excellent for weak disorder. Deviation of the ratio from the
open symbols for strong disorder indicates that the true con-
ductivity at length scal€ is stongly normalized compared
2627 2% with the bare conductivity. However, it is notable that the
Gio=——2, v2(k) —<73, (6) trend of the ratio a8V increases is captured by the simple
K [(E-21—E(k)"+2;] expression. For larg&V/, no dependence ok should be
expected for smalE, thus the ratios converge to the same
can also be evaluated =3,—i%, is the self-energy ob- value for differentE with t=0.3, as can be seen in the inset
tained by solving a self-consistent equatfdi:'>This shows  in Fig. 4.
remarkably good scaling, as shown in Fig. 3, including re- In summary, we have performed an extensive numerical
sults forE=0, as well as foE+ 0. The curve in Fig. 3 shows study of the scaling properties of highly anisotropic systems.
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8.5 ‘ . ‘ gime, the ratio of the localization lengths is proportional to
A the square root of the ratio of the conductivities which in turn
= A =06 o § . ] . . . .
3.0 [ . . 105 BRI i is proportional to the_ strength of the a_nlsotropy(_Le.,
. =04 . £ 1§~1). Recall that in the extended regifrfethe ratio of
_ o 2sy ' HOWTe the correlation length is inversely proportional to the ratio of
Eﬁ ool . ] the conductivity(i.e., gl/§”=ao||/am~1/t2). It was also
o . L e s shown that the geometric mean of the localization lengths is
15 '-. . 00 04 82 03 04 03 0] a function of the geometric mean of the conductivities.
“, . Finally, it was numerically shown that the conductances
1.0 — sos 4 2 288 a . . ] along the two different directions of the anisotropic system
0 T are the same, provided that the dimension of the anisotropic
0.0 0.1 0.2 0.3 0.4 0.5 0.6 system is proportional to the localization length in this direc-
Tw tion. This procedure can be easily used in other anisotropic
systems.

FIG. 4. The ratio of¢; /tgH is plotted versus W, for t=0.1,
0.3, and 0.6 witfE=0. ¢, and§ are the localization lengths along

the two propagating directions. The solid symbols are the numerical Ames Laboratory is operated for the U.S. Department of
results, while the open symbols are the CPA results. In the inset thEnergy by lowa State University under Contract No.
numerical results of, /t§ versus IW is plotted fort=0.3 with W-7405-Eng-82. This work was supported by the Scalable
E=0.0, 1.5, and 2.0. Computing Laboratory of Ames Lab, the director for Energy

Research, Office of Basic Energy Sciences, NATO Grant
Scaling functions of isotropic systems are recovered once thdo. CRG 940647. This work was also supported in part by
dimension of the system in each direction is chosen to b&U grants and AIENEA Research Grant of the Greek Sec-
proportional to the localization length. In the localized re-retariat of Science and Technology.
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